Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Transportwege des Lichts: Neue Einblicke in die Energiegewinnung bei Pflanzen und Bakterien

21.06.2013
Pflanzen und einige Bakterienarten verwandeln bis zu 95 Prozent des Sonnenlichts, dem sie in der Natur ausgesetzt sind, in chemische Energie.

Industriell gefertigte Solarzellen verwerten hingegen nur rund 20 Prozent des absorbierten Lichts. Wie gelingt es Pflanzen und Bakterien, das Sonnenlicht mit einer so viel höheren Effizienz für die Energiegewinnung zu nutzen?


Modell eines Antennenproteins in der Ansicht von oben. Die darin enthaltenen verschiedenen Farbstoffmoleküle sind rot, grün und gelb dargestellt. Grafik: Dr. Richard Hildner, Universität Bayreuth


Modell eines Antennenproteins in einer Seitenansicht. Die darin enthaltenen verschiedenen Farbstoffmoleküle sind auch hier rot, grün und gelb dargestellt. Grafik: Dr. Richard Hildner, Universität Bayreuth

Eine Forschungsgruppe um den Bayreuther Experimentalphysiker Dr. Richard Hildner ist diesen Geheimnissen auf die Spur gekommen. In der Online-Ausgabe des Wissenschaftsmagazins "Science" berichten die Wissenschaftler über ihre Erkenntnisse, die für künftige Technologien der Energiegewinnung von erheblicher Bedeutung sein können.

Antennenproteine: Molekulare Zwischenstationen auf dem Weg zur Photosynthese

Wenn Pflanzen oder Bakterien das Licht der Sonne absorbieren und in chemische Energie verwandeln, haben Antennenproteine dabei eine Schlüsselfunktion. Jedes dieser Proteine hat eine ringförmige Struktur, in der sich eine Vielzahl von Farbstoffmolekülen befindet. Die Farbstoffmoleküle nehmen Lichtenergie auf und übertragen diese mit extrem hoher Geschwindigkeit auf benachbarte Farbstoffmoleküle: zunächst auf Moleküle innerhalb desselben Antennenproteins, dann auf Moleküle in einem angrenzenden Antennenprotein. So durchläuft die absorbierte Lichtenergie eine Kette mehrerer Antennenproteine, bis sie schließlich in einem Reaktionszentrum ankommt. Hier werden die Prozesse der Photosynthese in Gang gesetzt, die aus der Lichtenergie chemische Energie erzeugen.

Stabiler Energietransport: Im gleichmäßigen Takt auf wechselnden Wegen

Dr. Richard Hildner hat zusammen mit den Physikern Niek van Hulst, Daan Brinks und Jana Nieder in Barcelona und dem Biochemiker Richard Cogdell aus Glasgow den Transport der Lichtenergie mit einer bisher unerreichten Präzision analysiert. Dabei haben die Wissenschaftler ein unerwartetes Phänomen entdeckt. Wenn die Energie von einem Farbstoffmolekül auf das nächste benachbarte Farbstoffmolekül übertragen wird, sind das keine zufälligen, unorganisierten Prozesse. Vielmehr arbeiten alle Farbstoffmoleküle in einem gleichmäßigen Takt. In der Physik bezeichnet man dieses Phänomen als quantenmechanisch kohärenten Transport. Die Energie kann sich dadurch wie eine Welle ungehindert durch ein Antennenprotein bewegen.

Und noch eine weitere Entdeckung hat die Forschergruppe gemacht: Die Transportwege ändern sich ständig. Die Lichtenergie durchläuft keineswegs immer die gleichen Ketten von Farbstoffmolekülen auf ihrem Weg durch die Antennenproteine. Variabilität der Transportwege und Kohärenz– diese Kombination ist für den Energietransport in Pflanzen und Bakterien charakteristisch.

Wie die Forscher herausgefunden haben, erfüllt diese Kombination einen biologischen Zweck. Aufgrund des kohärenten, wellenartigen Transports findet die Energie immer den besten Pfad durch ein Antennenprotein. Dies trägt wesentlich dazu bei, dass der Transport der Lichtenergie auch dann effizient verläuft, wenn die Umgebung der Farbstoffmoleküle wechselt – sei es, dass die Temperatur schwankt; sei es, dass sich die innere geometrische Struktur der Antennenproteine ändert.

Spektroskopische Momentaufnahmen mit ultrakurzen Laserpulsen

Wie war es den Forschern möglich, so tief – bis hinunter auf die Ebene einzelner Moleküle – in den Transport von Lichtenergie vorzudringen? Entscheidend war eine neuartige spektroskopische Versuchsanordnung. Wird ein Antennenprotein, während die Lichtenergie in seinem Inneren von einem Farbstoffmolekül zum nächsten wechselt, einem ultrakurzen Laserpuls ausgesetzt, entsteht eine spektroskopische Momentaufnahme. Sie zeigt die unterschiedlichen Anregungszustände der Farbstoffmoleküle, die sich im Antennenprotein befinden. Daran lässt sich ablesen, welches Farbstoffmolekül exakt zu diesem Zeitpunkt am Transport der Lichtenergie beteiligt ist. Das Team um Dr. Richard Hildner hat nun viele solche Momentaufnahmen desselben Antennenproteins kurz hintereinander geschaltet. So konnten die Wissenschaftler die Transportwege der Lichtenergie verfolgen und dabei auch die Kohärenz des Transports nachweisen.

Derart hochpräzise Einblicke in den Transport von Lichtenergie entstehen allerdings nur, wenn für jede der aufeinander folgenden Momentaufnahmen ein ultrakurzer Laserpuls verwendet wird, der nur wenige Femtosekunden dauert. Eine Femtosekunde entspricht dem billiardsten Teil einer Sekunde. In diesem winzigen Zeitraum legt das Licht eine Strecke zurück, die ungefähr so lang ist wie ein Hundertstel des Durchmessers eines menschlichen Haars. Hingegen braucht das Licht eine Sekunde, um die Strecke von der Erde zum Mond zu durchlaufen.

"Light Harvesting" – ein Schwerpunktthema an der Universität Bayreuth

Die in "Science" veröffentlichten Erkenntnisse sind ein grundlegender Beitrag zu einem Forschungsgebiet, für das sich der Begriff des "Light Harvesting" ("Lichternte") etabliert hat. Das Ziel ist es, die Prozesse der pflanzlichen und bakteriellen Energiegewinnung aus Licht so tiefgehend zu verstehen, dass sie durch mindestens ebenso effiziente künstliche Verfahren nachgeahmt werden können. Dies könnte ein Weg sein, um die globale Energieversorgung nachhaltig zu sichern.
An der Universität Bayreuth befasst sich eine interdisziplinäre Forschungsgruppe bereits seit vielen Jahren mit diesem Forschungsgebiet. Im April 2013 hat Prof. Dr. Jürgen Köhler, Inhaber des Lehrstuhls Experimentalphysik IV, eine internationale Konferenz zum Thema „Light Harvesting Processes“ in Kloster Banz organisiert. Er ist Vorsitzender des DFG-Graduiertenkollegs "Photophysics of Synthetic and Biological Multichromophoric Systems" an der Universität Bayreuth. Dr. Richard Hildner ist wissenschaftlicher Mitarbeiter am Lehrstuhl Experimentalphysik IV; für seine Leistungen auf dem Gebiet der Quanteneffekte in einzelnen Molekülen und mokekularen Systemen wird er in diesem Jahr mit dem international renommierten Sturge Prize ausgezeichnet.

Veröffentlichung:

Richard Hildner, Daan Brinks, Jana B. Nieder, Richard Cogdell, Niek F. van Hulst,
Quantum coherent energy transfer over varying pathways in single light-harvesting complexes,
in: Science 2013, published online 21 June 2013
DOI: 10.1126/science.1235820

Kontaktadresse:

Dr. Richard Hildner
- Lehrstuhl Experimentalphysik IV -
Universität Bayreuth
Universitätsstrasse 30
D-95440 Bayreuth, Germany
Tel.: +49 (0) 921 55 4040
E-Mail: richard.hildner@uni-bayreuth.de

Zum Sturge Prize 2013 für Dr. Richard Hildner siehe:
http://idw-online.de/de/news539834

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie