Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Transkriptionsfaktoren: Funktion folgt Form

15.10.2013
Räumliche Struktur bestimmt Aktivität von Transkriptionsfaktoren

Lehm kann in verschiedene Formen für unterschiedliche Objekte wie Tassen, Teller oder Ziegel gebracht werden. In ähnlicher Weise können Proteine​​ ihre Gestalt verwandeln und so ihre Funktion und Aktivität anpassen.


Einzelne Abschnitte des Glukokorticoid-Rezeptors ändern ihre räumliche Struktur (rot), wenn der Rezeptor an DNA (links) bindet oder wenn eine zusätzliche Aminosäure in die DNA-Bindungsdomäne eingebaut wird (rechts).

© MPI f. molekulare Genetik/Meijsing

Forscher vom Max-Planck-Institut für molekulare Genetik in Berlin haben Proteine auf solche Formveränderungen untersucht, die die Aktivität von Genen steuern, sogenannte Transkriptionsfaktoren. Dabei haben sie entdeckt, dass die DNA die Form des Glukokortikoidrezeptors verändert und wie verschiedene Domänen des Moleküls miteinander kommunizieren.

Zusätzlich kann er seine Aktivität anpassen, je nachdem welche DNA-Sequenz er gerade gebunden hat. Außerdem ändert sich die Vernetzung von Domänen des Proteins durch Einbau einzelner Aminosäuren in die Proteinkette. Damit werden verschiedene Gene unterschiedlich stark abgelesen.

Transkriptionsfaktoren sind dafür verantwortlich, dass die richtigen Gene abgelesen und so Proteine in der richtigen Menge produziert werden. Sie binden an spezielle DNA-Abschnitte in der Nähe von Genen, wie zum Beispiel Promotoren. Allerdings funktionieren die Transkriptionsfaktoren nicht einfach wie ein An/Aus-Schalter, sondern eher wie ein Lautstärke-Regler, der ein feines Steuern der Expression von Genen ermöglicht.

Der Glukokortikoidrezeptor ist ein Transkriptionsfaktor, der beispielsweise beim Fasten durch das Hormon Kortisol aktiviert wird und so die Freisetzung von Glucose in der Leber bewirkt. Er spielt darüber hinaus wegen seiner entzündungshemmenden Wirkung eine wichtige Rolle bei der Behandlung von Krankheiten, die durch ein überaktives Immunsystem bedingt sind, wie Allergien, Autoimmunerkrankungen oder Asthma. Verschiedene Signale bestimmen seine Aktivität, zwei davon sind: Einerseits die DNA, an die der Glukokortikoidrezeptor bindet, um die Gene zu regulieren. Das zweite Signal ist der Einbau zusätzlicher Aminosäuren in das Protein.

Die Berliner Max-Planck-Forscher haben untersucht wie diese beiden Signale beeinflussen, welche Gene vom Glukokortikoidrezeptor reguliert werden und wie sie die Stärke der Regulation beeinflussen. „Unsere Ergebnisse zeigen, dass die DNA nicht einfach ein passiver Klettband ist, der von Proteinen gebunden werden kann. Vielmehr ändert die DNA die Form der Proteine und damit die Kommunikation zwischen verschiedenen Proteinen-Domänen“, erklärt Sebastiaan H. Meijsing vom Max-Planck-Institut für molekulare Genetik. Auf diese Weise kann der Glukokortikoidrezeptor seine Aktivität auf einzelne Gene anpassen.

Außerdem existieren verschiedene Varianten des Glukokortikoidrezeptors. Sie entstehen, wenn die ursprüngliche RNA-Kette, die beim Ablesen des Glukokortikoidrezeptor-Gens entstanden ist, nachträglich noch verändert wird. Bei diesem als alternativen Spleißen bezeichneten Prozess können zusätzliche Bausteine in die Aminosäurekette des Proteins eingefügt werden. Die Modifizierung verändert die Vernetzung verschiedener Bereiche des Glukokortikoidrezeptors miteinander. Dadurch können dann unterschiedliche Gene verschieden stark abgelesen werden. „Transkriptionsfaktoren ändern also wie Chamäleons ihre Erscheinung. Sie können so auf unterschiedliche Signale reagieren und Gene besonders fein regulieren“, sagt Meijsing.

Ansprechpartner

Dr. Sebastian Meijsing
Max-Planck-Institut für molekulare Genetik, Berlin
Telefon: +49 30 8413-1176
E-Mail: meijsing@­molgen.mpg.de
Dr. Patricia Marquardt
Pressestelle
Max-Planck-Institut für molekulare Genetik, Berlin
Telefon: +49 30 8413-1716
Fax: +49 30 8413-1671
E-Mail: patricia.marquardt@­molgen.mpg.de
Originalpublikation
Morgane Thomas-Chollier, Lisa C. Watson, Samantha B. Cooper, Miles A. Pufall, Jennifer S. Liu, Katja Borzym, Martin Vingron, Keith R. Yamamoto, Sebastiaan H. Meijsing
A naturally occuring insertion of a single amino acid rewires trancriptional regulation by glucocorticoid receptor isoforms

PNAS, 14. Oktober 2013

Dr. Sebastian Meijsing | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/7568821/transkriptionsfaktor_glukokortikoidrezeptor

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie