Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Tor zur Therapie mit humanen Muskelstammzellen aufgestoßen

27.08.2014

Muskelstammzellen sind für die Reparatur von Muskelschäden unverzichtbar. Alle Versuche, diese Zellen des Menschen therapeutisch zu nutzen, sind jedoch bisher fehlgeschlagen.

Wie es aber doch gehen könnte, zeigen jetzt Dr. Andreas Marg und Prof. Simone Spuler vom Experimental and Clinical Research Center (ECRC) des Max-Delbrück-Centrums (MDC) und der Berliner Charité. Sie entwickelten eine Methode, mit der sie Muskelstammzellen nicht isoliert, sondern mit ihrer Muskelfaser kultivieren, vermehren und transplantieren. Bei Mäusen konnten sie damit bereits Muskeln regenerieren. Sie haben damit das Tor für den Einsatz von Muskelstammzellen für die Therapie von Muskelerkrankungen aufgestoßen.*


Muskelzelle (rot) mit Muskelstammzellen des Menschen (grün)

(Photo: Andreas Marg/Copyright: ECRC)


Muskelstammzellen (grün) vermehren sich in Muskelzellen (rot) um das 20-50fache, wenn sie bei 4 Grad Celsius in Kultur gehalten werden. Das Photo zeigt sie nach drei Wochen in der Zellkultur.

(Photo: Andreas Marg/Copyright: ECRC)

„Muskelstammzellen, die wir auch Satellitenzellen nennen, können nach jahrzehntelanger Ruhe in ihrer Stammzellnische erwachen und einen geschädigten Muskel reparieren“, erläutert Prof. Spuler. Die Neurologin leitet am ECRC in Berlin-Buch die Hochschulambulanz für Muskelkrankheiten der Charité und erforscht mit ihrem Team die Ursachen dieser Erkrankungen. Satellitenzellen sind auch bei Menschen mit schweren Muskelerkrankungen aktiv, etwa bei der Muskeldystrophie Duchenne, einer schweren, genetisch bedingten Erkrankung, bei der sich die Muskeln abbauen. „Doch irgendwann ist das Reservoir an Muskelstammzellen erschöpft und der Muskelabbau kann nicht mehr gestoppt werden“, so Prof. Spuler.

Alle Versuche, mit der Transplantation von Satellitenzellen bei Patienten mit Duchenne Muskeldystrophie Muskeln wieder aufzubauen, sind gescheitert. Die transplantierten Zellen sind nicht lebensfähig. Wenig erfolgreich war auch der Einsatz anderer Zellen, die ebenfalls das Potential haben, Muskeln zu regenerieren. Diese Zellen können nur in begrenztem Maß Muskelgewebe reparieren. Aber wie kann es gelingen, das körpereigene Selbsterneuerungs- und Wiederaufbaupotential von Satellitenzellen doch noch zu nutzen?

Das Angebot der Entwicklungsbiologin Prof. Dr. Carmen Birchmeier (MDC) im Rahmen eines Verbundprojekts zu Satellitenzellen (SatNet) des Bundesforschungsministeriums mitzuarbeiten, brachte Prof. Spuler und ihre Mitarbeiter auf die Spur. In dem Projekt wurde unter anderem untersucht, weshalb Satellitenzellen schnell ihr Regenerationspotential verlieren, wenn sie in Zellkultur gehalten werden. Daraus entstand die Idee, Satellitenzellen zusammen mit dem sie umgebenden Muskelgewebe zu kultivieren und zu sehen, ob die Zellen, wenn ihr vertrautes Milieu erhalten bleibt, möglicherweise besser regenerieren.

Muskelbiopsien von jungen und von alten Spendern
Von Neurochirurgen des Helios Klinikums Berlin-Buch, das ebenso wie das MDC in unmittelbarer Nähe zum ECRC liegt, erhielten Prof. Spuler und Dr. Marg – nach Aufklärung und schriftlicher Einwilligung – von Patienten im Alter zwischen 20 und 80 Jahren frische Gewebeproben von Oberschenkelmuskeln. Aus den Biopsien gewannen Prof. Spuler und ihre Mitarbeiter über 1 000 Muskelfaserfragmente, jedes etwa 2-3 Millimeter lang. Für die Forscher ist bemerkenswert, dass die Anzahl der Stammzellen in den einzelnen Gewebeproben unabhängig vom Alter des Spenders war und dass sich aus wenigen Satellitenzellen tausende von Myoblasten entwickelten. Diese Zellen fusionieren nach weiteren Entwicklungsschritten zu Muskelfasern.

Dr. Marg: „Satellitenzellen brauchen ihr ,Hausʽ um sich herum“
Prof. Spuler und ihre Mitarbeiter kultivierten die Muskelfaserfragmente mit den Satellitenzellen zunächst für bis zu 3 Wochen. In dieser Zeit vermehrten sich die Satellitenzellen um das 20- bis 50fache, aber auch zahlreiche Bindegewebszellen entwickelten sich in diesen Kulturen. Um das zu verhindern, unterzogen sie die Muskelfragmente gleichzeitig einem Sauerstoffentzug (Hypoxie) und einer Kühlung (Hypothermie) bei 4 Grad Celsius. Unter diesen Bedingungen können nur Satellitenzellen in ihrer Stammzellnische überleben, nicht aber die Bindegewebszellen. „Offenbar erhalten die Satellitenzellen im eigenen ,Hausʽ die notwendige Versorgung“, so Dr. Marg.

Erstmals Satellitenzellen des Menschen kultiviert und vermehrt
Erstmals ist es den ECRC-Forschern mit ihren Versuchen gelungen zu zeigen, dass es möglich ist, Satellitenzellen des Menschen zu kultivieren, zu vermehren und ihr Regenerationspotential für einige Wochen zu erhalten. Damit haben sie eine wichtige Voraussetzung für die Nutzung patienteneigener Zellen für die Therapie geschaffen.

Erster Erfolg in Mäusen
Ihren Therapieansatz untersuchten die ECRC-Forscher dann in Mäusen, deren Muskelregeneration durch Bestrahlung unterbunden worden war. In den vorderen Schienbeinmuskel transplantierten sie Muskelfragmente mit den darin enthaltenen Satellitenzellen, die sie nach Hypothermie für 2 Wochen in Zellkultur gehalten hatten. Und es zeigte sich, dass die Muskeln der Tiere, die mit diesen Faserfragmenten behandelt wurden, besonders gut regenerierten.

Ziel: Satellitenzellen mit Gentherapie zu koppeln
Doch mit der Transplantation von Muskelfragmenten allein kann eine genetisch bedingte Muskelerkrankung nicht erfolgreich behandelt werden. Prof. Spuler: „Die Idee ist deshalb, die Satellitenzellen zusätzlich mit einem gesunden Gen zu bestücken, das den Gendefekt repariert, und sie dann mit Hilfe eines nicht-viralen Gentaxis in die zu behandelnden Muskeln einzubringen“. Dass das im Prinzip geht, haben Prof. Spuler und ihre Mitarbeiter in einem ersten Versuch mit einem „Reporter-Gen“ in der Petrischale gezeigt. Es leuchtet grün, wenn es in die Satellitenzelle eingebracht wurde. Als Gentaxi nutzten sie das Transposon „Dornröschen“ – ein springendes Gen, das seinen Ort im Genom verändern kann. Es wurde vor einigen Jahren von Dr. Zsuzsanna Izsvák (MDC) und Dr. Zoltán Ivics (Paul-Ehrlich-Institut, Frankfurt) entwickelt und gilt als vielversprechendes Vehikel für die Gentherapie.

Bevor die von Prof. Spuler und ihrer Gruppe entwickelte Methode für Patienten nutzbar gemacht werden kann, müssen aber noch einige Hürden genommen werden. Bislang gelingt die Transplantation in kleinen Mäusemuskeln. Ob diese Technik auch in großen Oberschenkelmuskeln des Menschen angewendet werden kann, die unter Umständen durch eine Muskelkrankheit stark verändert sind, wollen die Wissenschaftler und Ärzte in klinischen Versuchen überprüfen.

*Journal of Clinical Investigation, http://dx.doi.org/10.1172/JCI63992
Human satellite cells have regenerative capacity and are genetically manipulable
Andreas Marg1, Helena Escobar2, Sina Gloy1,*, Markus Kufeld3, Joseph Zacher4, Andreas Spuler5, Carmen Birchmeier6, Zsuzsanna Izsvák2, Simone Spuler1
1 Muscle Research Unit, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the
Max Delbrück Center for Molecular Medicine, Berlin
2 Mobile DNA, Max Delbrück Center for Molecular Medicine, Berlin
3 Clinic for Radiation Oncology and Radiotherapy, Charité Universitätsmedizin Berlin
4 Dept. of Orthopedic Surgery, HELIOS Klinikum Berlin-Buch, Berlin
5 Dept. of Neurosurgery, HELIOS Klinikum Berlin-Buch, Berlin
6 Developmental Biology / Signal transduction, Max Delbrück Center for Molecular Medicine, Berlin
*present address: Pediatric Hospital St. Nikolaus, Viersen, Germany

Kontakt:
Barbara Bachtler
Leiterin Pressestelle
Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch
in der Helmholtz-Gemeinschaft
Robert-Rössle-Straße 10
13125 Berlin
Tel.: 030/ 9406 - 3896
Fax: 030/ 9406 - 3833
E-Mail: presse@mdc-berlin.de
http://www.mdc-berlin.de/de

Verena Wolff
Pressereferentin
GB Unternehmenskommunikation
Charité – Universitätsmedizin Berlin
Charitéplatz 1
10117 Berlin
Tel.: 030/ 450 570 - 502
Fax: 030/ 450 570 - 940
E-Mail: verena.wolff@charite.de
http://www.charite.de

Barbara Bachtler | Max-Delbrück-Centrum

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neuer Abwehrmechanismus gegen Sauerstoffradikale entdeckt
18.06.2018 | Universität Bern

nachricht Umwandlung von nicht-neuronalen Zellen in Nervenzellen
18.06.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 in Shanghai

Die AchemAsia geht in ihr viertes Jahrzehnt und bricht auf zu neuen Ufern: Das International Expo and Innovation Forum for Sustainable Chemical Production findet vom 21. bis 23. Mai 2019 in Shanghai, China statt. Gleichzeitig erhält die Veranstaltung ein aktuelles Profil: Die elfte Ausgabe fokussiert auf Themen, die für Chinas Prozessindustrie besonders relevant sind, und legt den Schwerpunkt auf Nachhaltigkeit und Innovation.

1989 wurde die AchemAsia als Spin-Off der ACHEMA ins Leben gerufen, um die Bedürfnisse der sich damals noch entwickelnden Iindustrie in China zu erfüllen. Seit...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: Li-Fi erstmals für das industrielle Internet der Dinge getestet

Mit einer Abschlusspräsentation im BMW Werk München wurde das BMBF-geförderte Projekt OWICELLS erfolgreich abgeschlossen. Dabei wurde eine Li-Fi Kommunikation zu einem mobilen Roboter in einer 5x5m² Fertigungszelle demonstriert, der produktionsübliche Vorgänge durchführt (Teile schweißen, umlegen und prüfen). Die robuste, optische Drahtlosübertragung beruht auf räumlicher Diversität, d.h. Daten werden von mehreren LEDs und mehreren Photodioden gleichzeitig gesendet und empfangen. Das System kann Daten mit mehr als 100 Mbit/s und fünf Millisekunden Latenz übertragen.

Moderne Produktionstechniken in der Automobilindustrie müssen flexibler werden, um sich an individuelle Kundenwünsche anpassen zu können. Forscher untersuchen...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: ALMA entdeckt Trio von Baby-Planeten rund um neugeborenen Stern

Neuartige Technik, um die jüngsten Planeten in unserer Galaxis zu finden

Zwei unabhängige Astronomenteams haben mit ALMA überzeugende Belege dafür gefunden, dass sich drei junge Planeten im Orbit um den Säuglingsstern HD 163296...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Simulierter Eingriff am virtuellen Herzen

18.06.2018 | Veranstaltungen

Künstliche Intelligenz – Schafft der Mensch seine Arbeit ab?

15.06.2018 | Veranstaltungen

Internationale Konferenz zur Asteroidenforschung in Garching

13.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neuer Abwehrmechanismus gegen Sauerstoffradikale entdeckt

18.06.2018 | Biowissenschaften Chemie

Umwandlung von nicht-neuronalen Zellen in Nervenzellen

18.06.2018 | Biowissenschaften Chemie

Im Fußballfieber: Rittal Cup verspricht Spannung und Spaß

18.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics