Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Tödliche Parasiten erfinden das Rad neu

26.03.2015

Berner Forschende haben in Trypanosomen, einzelligen Parasiten, eine Art winzige Maschine entdeckt, die den Transport von Proteinen durch die Zelle steuert. Dieser Fund könnte helfen, eine der wichtigsten Fragen der Evolutionsbiologie zu beantworten: Wie entstanden komplexe Zellen?

Trypanosomen sind die Exoten unter den Einzellern: Sie haben sich über Hunderte von Jahrmillionen isoliert von anderen Organismen entwickelt und unterscheiden sich daher stark von diesen. Für Evolutionsbiologen sind die Parasiten interessant, weil sie Einblicke in die Frühphase komplexer Lebensformen bieten.


Rasterelektronenmikroskop-Aufnahme zweier Trypanosomen (blau), die im Blut schwimmen. Bei der runden Struktur handelt es sich um ein rotes Blutkörperchen.

Christopher Jackson

«Wie sich komplexe Zellen entwickelten, ist eine der wichtigsten Fragen der Evolutionsbiologie», sagt André Schneider vom Departement für Chemie und Biochemie der Universität Bern. Er und sein Team sind der Antwort nun einen Schritt näher gekommen: Sie haben in den Trypanosomen eine Art Nano-Maschine entdeckt, die Rückschlüsse zulässt, wann diese und andere Lebensformen einst separate evolutionäre Entwicklungswege einschlugen.

Die Nano-Maschine steuert den Transport von Proteinen – quasi den zellulären Bausteinen – in das Mitochondrium der Zelle, welches für die Energieproduktion zuständig ist. Vor mehr als zwei Milliarden Jahren waren Mitochondrien noch freilebende Bakterien, die dann vom Vorfahren aller komplexen Zellen einverleibt wurden. «Anstatt wie üblich das Bakterium zu verspeisen, hat dieser es quasi als Haustier behalten», erläutert Schneider. Während das Mitochondrium Energie erzeugte, erhielt es im Gegenzug von seiner Wirtszelle Nahrung.

Rohrpost statt Förderband

Ohne dieses Zellkraftwerk hätten sich komplexe Zellen nie entwickelt und damit auch der Mensch nicht. Dass auch Trypanosomen über ein Mitochondrium mit einer Transportmaschine verfügen, war insofern zu erwarten, wie André Schneider sagt. «Ihr Aufbau ist jedoch sehr ungewöhnlich.»

Denn obwohl sie die gleiche Aufgabe erfüllen, unterscheiden sich die einzelnen Bestandteile der Trypanosomen-Maschine stark von denen anderer Lebensformen. Schneider drückt es so aus: «Wir haben ein Förderband erwartet, aber eine Rohrpost vorgefunden.» Das sei erstaunlich. In der Natur werde das Rad nämlich «nur selten neu erfunden», sondern die Evolution nutze in der Regel – wie im Fall der Zellkraftwerke – schon vorhandene Strukturen und entwickle diese weiter.

Wie lassen sich also die grossen Unterschiede zwischen den funktionell identischen Transportmaschinen verschiedener Organismen erklären? «Eine simple Version davon gab es sicher schon in der ersten komplexen Zelle», sagt Schneider dazu.

«Doch die zusätzlichen Teile der heutigen Nano-Maschinen sind offensichtlich erst entstanden, nachdem sich die komplexen Zellen bereits in Gruppen aufgespalten hatten, aus denen sich dann zum Beispiel Tiere oder eben Trypanosomen entwickelten.» Es habe in den verschiedenen Gruppen somit keine gemeinsamen Strukturen gegeben, aus denen die Maschinenteile hätten abgeleitet werden können. Sie mussten jeweils von Grund auf in jeder Gruppe neu entwickelt werden.

Fein verästelter Stammbaum

Diese einfache Erklärung, warum funktionell identische Teile in verschiedenen Spezies völlig unterschiedlich aussehen, hat laut Schneider für das Verständnis der Evolution komplexer Zellen grosse Bedeutung. «Ihr Stammbaum weist in seiner Krone Tausende feiner Verästelungen auf, deren Verlauf wir recht genau kennen. Die Antwort auf die viel wichtigere Frage, wie viele Hauptäste es im unteren Bereich des Stammbaums gibt und wo diese beginnen, ist allerdings noch unklar.» In dem man die urtümlichen Transportmaschinen mit jenen anderer Spezies vergleicht, erhält man Einblick in die frühen Verzweigungen des Stammbaums.

Neue Ansätze im Kampf gegen die Schlafkrankheit

Trypanosomen sind für die tödliche Schlafkrankheit verantwortlich, die von der Tsetsefliege übertragen wird. «Wegen unzureichenden Medikamenten ist ihre Behandlung bis heute aber oft ein Problem», sagt Schneider. Seine Erkenntnisse könnten auch für die klinische Forschung relevant sein. «Obwohl die Transportmaschinen der Trypanosomen-Mitochondrien ganz anders aussehen als die des Menschen, sind sie für das Überleben der Parasiten genauso wichtig.» Sie stellten daher interessante neue Zielstrukturen für die medikamentöse Behandlung der Schlafkrankheit dar.

Quellenangabe:

Mani J., Desy D., Niemann M., Chanfon A., Oeljeklaus S., Pusnik M., Schmidt O., Gerbeth C., Meisinger C., Warscheid B. and Schneider A. Novel mitochondrial protein import receptors in Kinetoplastids reveal convergent evolution over large phylogenetic distances, Nature Communications, 2015 (in press). DOI: 10.1038/ncomms7646

Weitere Informationen:

http://www.medienmitteilungen.unibe.ch

Nathalie Matter | Universität Bern
Weitere Informationen:
http://www.unibe.ch

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften