Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Entwicklungsbiologie - Tödliche Mitgift

11.12.2015

Was bringt Zellen zum Absterben? LMU-Forscher um Biologieprofessorin Barbara Conradt zeigen, dass bereits in der Mutterzelle ungleiche Überlebenschancen angelegt sind.

Der programmierte Zelltod – die Apoptose – ist ein streng regulierter, universell gültiger Prozess, mit dem höhere Organismen unerwünschte Zellen beseitigen. Wichtig ist dies beispielsweise bei der Embryonalentwicklung, bei der zahlreiche überflüssige oder nicht mehr benötigte Zellen anfallen.


Foto: Bob Goldstein, UNC Chapel Hill / wikimediaorg

Forscher um Barbara Conradt, LMU-Professorin für Zell- und Entwicklungsbiologie, haben am Modellorganismus, dem Fadenwurm Caenorhabditis elegans (C. elegans), untersucht, welche Mechanismen die Apoptose auslösen. Dabei konnten sie zeigen, dass schon in der Mutterzelle die Weichen für das Schicksal der Tochterzellen gestellt werden. Über ihre Ergebnisse berichten die Forscher im Magazin Nature Communications.

Während der Entwicklung von C. elegans entstehen 1090 Zellen, von denen aber 131 wieder absterben. Da genau bekannt ist, wann welche Zellen sterben, ist der Wurm für Studien zur Apoptose besonders geeignet – und da dieser Prozess bei allen höheren Organismen weitgehend übereinstimmt, können die Ergebnisse auch auf andere Organismen übertragen werden.

Die Apoptose läuft in genau definierten Schritten ab: Zunächst wird bestimmt, welche Zellen eliminiert werden sollen, dann folgt das eigentliche Abtöten der Zelle. „Wenn eine Zelle stirbt, verändert sich ihr Aussehen. Schließlich wird sie von Nachbarzellen einverleibt und verdaut. Dieser Prozess wird als Engulfment bezeichnet“, erklärt Conradt. „Seit etwa 15 Jahren ist bekannt, dass die Engulfment-Signalwege nicht nur als Müllabfuhr für tote Zellen dienen, sondern bereits beim Töten eine Rolle spielen. Wir haben jetzt entdeckt, auf welche Weise das passiert.“

Als Modell diente den Forschern die sogenannte NSM-Zelllinie von C. elegans. Aus NSM-Mutterzellen entstehen durch Teilung zwei unterschiedlich große Tochterzellen, von denen die kleinere sofort nach der Teilung stirbt. „Bisher dachte man, dass die Zelltodmaschinerie erst nach der Teilung anspringt“, sagt Conradt. „Wir konnten nun zeigen, dass sie in gewissem Umfang schon in der Mutterzelle aktiv ist und in bestimmten Nachbarzellen der Mutterzelle Teile des Engulfment-Signalwegs aktiviert.“

Diese Nachbarzellen wiederum bewirken dann in der Mutterzelle eine ungleiche Verteilung des Proteins CED-3 (einer Zelltodprotease oder ‚Caspase‘) – und zwar so, dass sich CED-3 in dem Bereich konzentriert, aus dem nach der Teilung die kleinere Tochterzelle hervorgeht.

Von CED-3 ist bekannt, dass es als „Killerfaktor“ den Zelltod aktiviert. „Die Mutterzelle leistet demnach schon vor der Teilung quasi Sterbehilfe für die kleinere Tochterzelle, indem sie ihr einen Großteil der zelltod-fördernden Faktoren mitgibt“, sagt Conradt.

Als nächsten Schritt wollen die Wissenschaftler nun diesen Prozess weiter analysieren und untersuchen, ob er auch in Säugetierzellen oder in Stammzellen abläuft. „Gerade bei Stammzellen, die sich auch asymmetrisch teilen, hat die ungleiche Verteilung von Ressourcen möglicherweise eine wichtige Funktion, da so unerwünschte Stoffe der absterbenden Tochterzelle mitgegeben und beseitigt werden können“, sagt Conradt.

Die Apoptose ist auch medizinisch sehr interessant, denn Fehler bei diesem Prozess können für den ganzen Organismus schädlich sein – und zwar sowohl, wenn noch benötigte Zellen absterben, als auch, wenn Zellen überleben, die normalerweise hätten sterben sollen. Mit Fehlern bei der Apoptose werden zahlreiche Erkrankungen in Verbindung gebracht, etwa Krebs, neurodegenerative Erkrankungen und Autoimmunkrankheiten. Ein vertiefter Einblick in die Mechanismen der Apoptose könnte künftig helfen, neue Zielstrukturen für Therapien zu entwickeln.
Nature Communications 2015

Publikation:
Engulfment pathways promote programmed cell death by enhancing the unequal segregation of apoptotic potential
Sayantan Chakraborty, Eric J. Lambie, Samik Bindu, Tamara Mikeladze-Dvali and
Barbara Conradt
Nature Communications 2015
DOI: 10.1038/ncomms10126

Kontakt:
Prof. Dr. Barbara Conradt
Biozentrum der LMU München
Department Biologie II
Zell- und Entwicklungsbiologie
Phone: 089 2180-74050
Email: conradt@biologie.uni-muenchen.de
http://www.cellbiology.bio.lmu.de/people/principal_investigators/barbara_conradt...

Luise Dirscherl | Ludwig-Maximilians-Universität München
Weitere Informationen:
http://www.uni-muenchen.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Nesseltiere steuern Bakterien fern
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Die Immunabwehr gegen Pilzinfektionen ausrichten
21.09.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften