Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Todesstoß für Krebszellen

29.03.2012
Wissenschaftler der Universität Würzburg haben bei Krebszellen eine Schwachstelle entdeckt, die sich als viel versprechender Angriffspunkt für neuartige Medikamente anbietet. Die Pharmaindustrie hat bereits ihr Interesse an der Entdeckung bekundet.

Das Prinzip klingt überraschend einfach: Wie alle anderen Körperzellen, gewinnen Krebszellen aus der Nahrung die notwendige Energie, um ihren Stoffwechsel aufrecht zu erhalten. Gleichzeitig aber verwenden sie einen großen Teil ihrer Nahrung, um daraus neue Zellbausteine aufzubauen, sich zu teilen und zu vermehren.

Weil Nahrung immer nur begrenzt vorhanden ist, arbeitet in Zellen eine Art „Wächter“, der darauf achtet, dass für beide Aufgaben immer genügend Ressourcen verwendet werden, und der das Wachstum begrenzt, wenn der Zelle nicht ausreichend Energie für normale Stoffwechselvorgänge zur Verfügung steht.

Publikation in Nature

Was passiert, wenn man diesen Wächter an seiner Arbeit hindert, haben Professor Martin Eilers und Dr. Daniel J. Murphy vom Biozentrum der Universität Würzburg in Zusammenarbeit mit einem internationalen Team erforscht. Über ihre Arbeit berichtet die renommierte Fachzeitschrift Nature in ihrer aktuellen Ausgabe.

Das Ergebnis: „Wenn die Krebszelle keine Rückmeldung mehr darüber erhält, dass ihr Energiehaushalt aus dem Gleichgewicht geraten ist, verschwendet sie ihre gesamten Ressourcen aus der Nahrung darauf, zu wachsen und sich zu teilen“, erklärt Martin Eilers, Inhaber des Lehrstuhls für Biochemie und Molekularbiologie. Die Zelle verausgabt sich dabei so sehr, dass ihr am Ende keine Energie mehr bleibt für die normalen Stoffwechselvorgänge in ihrem Inneren. Tatsächlich stirbt die Krebszelle ohne den Warnruf des Wächters, wie die Forscher zeigen konnten.

Auf den „Wächter“ waren die Forscher durch Zufall gestoßen. In großen Reihenuntersuchungen hatten sie gezielt Enzyme, sogenannte Kinasen, in Krebszellen abgeschaltet und dann die Folgen kontrolliert. Im Fall der ARK5-Kinase hatten sie einen Volltreffer gelandet. „Diese Kinase eignet sich als Angriffspunkt für potenzielle neue Medikamente“, sagt Daniel J. Murphy, Gruppenleiter am Lehrstuhl für Physiologische Chemie II. In sämtlichen Experimenten hätten sich Krebszellen an dieser Stelle als verwundbar gezeigt.

Gleichzeitig – und zur Überraschung der Wissenschaftler – hat sich in den Versuchen gezeigt, dass normale Zellen von einer Blockade der Kinase weitgehend unberührt bleiben. „Warum das so ist, verstehen wir noch nicht bis ins letzte Detail“, sagt Murphy. Und möglicherweise zeigen sich nach längerer Zeit auch an dieser Stelle Auswirkungen. Dennoch: „Wichtig im Hinblick auf eine potenzielle Therapie ist die Tatsache, dass sich an dieser Stelle normale von Krebszellen unterscheiden“, so Murphy.

Ein wissenschaftlicher Durchbruch

Ist das ein Durchbruch in der Krebstherapie? Bei dieser Frage zögern die Wissenschaftler mit der Antwort. „Ein neues Konzept ist es auf jeden Fall“, sagt Martin Eilers. „Eine ganz neue Art, das Problem anzugehen“, ergänzt Daniel J. Murphy. Ob damit auch ein Durchbruch für die Therapie einhergehen wird, müsse die Zeit zeigen. In der Zellkultur und im Tierversuch habe die Methode jedenfalls an Darmkrebszellen ihre Wirksamkeit bewiesen. Inwieweit auch andere Krebsarten sich auf diese Weise in den Tod treiben lassen, müsse im Rahmen weiterer Studien untersucht werden.

Immerhin hat die Pharmaindustrie bereits großes Interesse an den Ergebnissen der Würzburger Forscher gezeigt; eine Zusammenarbeit wird bald starten. Mit dem Comprehensive Cancer Center der Universität Würzburg stünde außerdem ein Partner bereit, um das Konzept in weiteren präklinischen Versuchen und eines Tages eine möglicheTherapie am Krankenbett erproben zu können, sagt Eilers.

Vor verfrühten Hoffnungen warnen die beiden allerdings: Es seien noch jede Menge Studien notwendig, bis ein abschließendes Urteil über den neuen Ansatz einer Krebstherapie möglich sei; und viele Jahre werden vergehen, bis ein Medikament marktreif ist – falls es überhaupt dazu kommt. „Es besteht immer die Gefahr, dass Zellen gegen einen Wirkstoff eine Resistenz entwickeln“, warnt Eilers vor allzu großer Euphorie.
Trotzdem: Momentan sind die beiden Wissenschaftler wegen ihrer Entdeckung optimistisch. Denn der wissenschaftliche Durchbruch steht zweifelsfrei fest.

Deregulated MYC expression induces dependence upon AMPK-related kinase 5. Lidan Liu, Jannes Ulbrich, Judith Müller, Torsten Wüstefeld, Lukas Aeberhard, Theresia R. Kress, Nathiya Muthalagu, Lukas Rycak, Ramona Rudalska, Roland Moll, Stefan Kempa, Lars Zender, Martin Eilers & Daniel J. Murphy. doi:10.1038/nature10927

Kontakt
Prof. Dr. Martin Eilers, T: (0931) 31-84111
E-Mail: Martin.Eilers@biozentrum.uni-wuerzburg.de

Dr. Daniel Murphy, T: (0931) 31-88069
E-Mail: daniel.murphy@biozentrum.uni-wuerzburg.de

Gunnar Bartsch | idw
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie