Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Timing im Tierreich

27.11.2012
Zur richtigen Zeit am richtigen Ort das Richtige tun: Wie Tiere das schaffen und damit ihr Überleben sichern, wird an der Uni Würzburg untersucht – in einem neuen Sonderforschungsbereich, den die Deutsche Forschungsgemeinschaft mit rund sieben Millionen Euro fördert.
Taufliegen schlüpfen immer am frühen Morgen, wenn die Luftfeuchtigkeit hoch ist. Mittags wäre die Gefahr zu groß, dass ihre zarten Flügel vertrocknen, bevor sie richtig ausgehärtet sind. Eine Innere Uhr hilft ihnen, die richtige Schlüpfzeit nicht zu verpassen.

Viele Blüten sind nicht den ganzen Tag lang geöffnet. Um zuverlässig an Pollen und Nektar zu kommen, können sich Honigbienen darum bis zu neun Tageszeiten merken und regelrecht einen Blüten-Besuchsplan abarbeiten. Nachmittags zum Beispiel fliegen sie zielstrebig zu Blüten, die nur nachmittags geöffnet sind.

Wüstenameisen laufen auf der Suche nach Futter verschlungene Wege. Haben sie etwas gefunden, kehren sie auf direktem Weg ins Nest zurück – um so schnell wie möglich aus der lebensgefährlichen Hitze zu kommen. Die kürzeste Laufstrecke zurück nach Hause „berechnen“ sie ganz ohne Navi, nur mit der Sonne als Kompass.

Timing: Ein weitgehend unerforschtes Feld

Diese Beispiele zeigen: Timing ist alles, und zwar nicht nur im Alltag des Menschen. Alle Organismen folgen gewissen Zeitplänen. Das schützt sie vor Hitze, Frost und anderen widrigen Umweltbedingungen, das sichert ihre Ernährung und ihr Überleben. Zum Einhalten ihrer Zeitpläne haben Tiere Mechanismen entwickelt, von denen die Wissenschaft teils nur wenig weiß. Innere Uhren gehören ebenso dazu wie beeindruckende Lern- und Gedächtnisleistungen.

Timing im Tierreich: Dieses weitgehend unerforschte Feld beackern nun Wissenschaftler der Universität Würzburg in einem neuen Sonderforschungsbereich. Bei einzeln und sozial lebenden Insekten wollen sie verschiedene Timing-Mechanismen analysieren – auf der Ebene von Nervensystemen, Sinnes- und Nervenzellen sowie von Molekülen.
Sie untersuchen auch, welche Bedeutung die Timing-Mechanismen für Entwicklung, Fortpflanzung, soziale Lebensweisen und Anpassung an die Umwelt besitzen. Die Erkenntnisse, die die Forscher dabei gewinnen, lassen auch Rückschlüsse auf andere Tiere und den Menschen zu. Denn die Inneren Uhren haben sich in der Evolution nicht stark verändert.

Komplexe Lebensgemeinschaften im Blick

Wie das Timing bei Tieren funktioniert, untersuchen die Würzburger Biologen auch an komplexen Lebensgemeinschaften im Freiland. Zum Beispiel am System Pilz – Pflanze – Blattlaus – Marienkäfer: Wenn Blattläuse an bestimmten Gräsern saugen, wehren sich die Pflanzen, indem sie bitter schmeckende Stoffe in ihren Saft mischen. Die Bitterstoffe stammen aus einem Pilz, der mit den Gräsern in Symbiose lebt.

Nun ist in der Blattlauskolonie gutes Timing gefragt: Ab wann wird der Saft so ungenießbar, dass sich der Aufwand für einen Wechsel auf eine andere Wirtspflanze lohnt? Einfach so umziehen können die Läuse nicht, denn dafür müssen sie fliegen. Sie lösen das Problem elegant: Falls der Grassaft zu bitter wird, erzeugen sie einfach Nachkommen, die Flügel besitzen.
Wie kommt es dazu? Und wie reagieren die Blattläuse, wenn als zusätzliche Bedrohung – neben dem bitteren Saft – Marienkäfer ins Spiel kommen, die gerne mal die eine oder andere Laus fressen? Auch das ist ein Projekt, das die Würzburger im neuen Sonderforschungsbereich bearbeiten werden.

Fakten zum Sonderforschungsbereich

Finanziell gefördert werden die Arbeiten von der Deutschen Forschungsgemeinschaft (DFG): Sie investiert in den kommenden vier Jahren voraussichtlich rund sieben Millionen Euro in den Würzburger Sonderforschungsbereich „Insect timing: mechanisms, plasticity and interactions“, der seine Arbeit am 1. Januar 2013 aufnimmt. Rund 70 Personen arbeiten mit, Sprecherin ist Charlotte Förster. Die Professorin hat am Biozentrum den Lehrstuhl für Neurobiologie und Genetik inne.

Sonderforschungsbereiche gelten als Aushängeschilder, die Universitäten eine exzellente Forschungsqualität bescheinigen. Die DFG richtet sie nach einem strengen Begutachtungsprozess ein; die Konkurrenz um das Fördergeld ist enorm. Sonderforschungsbereiche werden zunächst für vier Jahre bewilligt. Nach erneuten Begutachtungen kann die DFG sie um jeweils vier Jahre verlängern; die maximale Förderdauer liegt bei zwölf Jahren.

Beteiligte Fachrichtungen

Am neuen Sonderforschungsbereich sind vor allem Wissenschaftler aus dem Biozentrum der Uni Würzburg beteiligt: aus den Lehrstühlen für Neurobiologie und Genetik, Zoologie II (Verhaltensphysiologie und Soziobiologie), Zoologie III (Tierökologie und Tropenbiologie), aus der Botanik I (Molekulare Pflanzenphysiologie und Biophysik), der Biochemie und der Pharmazeutischen Biologie.

Vertreten sind zudem das Physiologische Institut, das Rudolf-Virchow-Zentrum für experimentelle Biomedizin, das Institut für Medizinische Strahlenkunde und Zellforschung sowie das Brain Research Institute der Universität Zürich.
Profile der beteiligten Forscher (pdf)

Kontakt

Prof. Dr. Charlotte Förster,
Biozentrum der Universität Würzburg,
T (0931) 31-88823, charlotte.foerster@biozentrum.uni-wuerzburg.de

Robert Emmerich | Uni Würzburg
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Das Chip-Bakterium bei der Katalyse beobachten
10.02.2016 | Universität Leipzig

nachricht „Killer-T-Zellen“ sind nur im Team gegen Viren stark
10.02.2016 | Medizinische Hochschule Hannover

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Weltweit genaueste optische Einzelionen-Uhr

Als erste Forschergruppe weltweit haben Atomuhren-Spezialisten der Physikalisch-Technischen Bundesanstalt (PTB) jetzt eine optische Einzelionen-Uhr gebaut, die eine bisher nur theoretisch vorhergesagte Genauigkeit erreicht. Ihre optische Ytterbium-Uhr erreichte eine relative systematische Messunsicherheit von 3 E-18. Die Ergebnisse sind in der aktuellen Ausgabe der Fachzeitschrift Physical Review Letters veröffentlicht.

Als erste Forschergruppe weltweit haben Atomuhren-Spezialisten der Physikalisch-Technischen Bundesanstalt (PTB) jetzt eine optische Einzelionen-Uhr gebaut, die...

Im Focus: The most accurate optical single-ion clock worldwide

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock which attains an accuracy which had only been predicted theoretically so far. Their optical ytterbium clock achieved a relative systematic measurement uncertainty of 3 E-18. The results have been published in the current issue of the scientific journal "Physical Review Letters".

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock...

Im Focus: Autonome Nanosatelliten in Arbeit

Zwei neue Weltraumprojekte werden an der Universität Würzburg vorbereitet: Sie sollen unter anderem die Beobachtung von Planeten und die autonome Fehlerkorrektur an Bord von Satelliten ermöglichen. Das Bundeswirtschaftsministerium fördert die Projekte mit rund 1,6 Millionen Euro.

Wirbelstürme erkennen, die über den Mars fegen. Meteore detektieren, die auf die Erde hinabstürzen. Ungewöhnliche Blitze erforschen, die aus der Erdatmosphäre...

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Fließphänomene an festen Oberflächen: Grenzflächengeschwindigkeit als wichtige Größe nachgewiesen

Wie man bewirken kann, dass Flüssigkeiten auf festen Oberflächen fast wie ein Schlitten gleiten können, haben jetzt Physiker der Saar-Universität gemeinsam mit Forscherkollegen aus Paris gezeigt: Möglich ist das durch Beschichtungen, die an der Grenzfläche zwischen Flüssigkeit und Oberfläche ein Rutschen der Flüssigkeit provozieren. In der Folge vergrößern sich auch die mittlere Fließgeschwindigkeit und der Durchsatz. Gezeigt wurde dies am Verhalten von Tropfen auf verschieden beschichteten Oberflächen beim Übergang in den Gleichgewichtszustand. Die Ergebnisse könnten für die Optimierung industrieller Prozesse nutzbar sein, beispielsweise zur Verarbeitung von Kunststoffen.

Die Studie wurde in der Fachzeitschrift PNAS (Proceedings of the National Academy of Sciences of the United States of America) veröffentlicht.

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Deutsche Gesellschaft für Verhaltensmedizin und Verhaltensmodifikation tagt in Mainz

10.02.2016 | Veranstaltungen

Bericht zur weltweiten Lage der Bestäuber

10.02.2016 | Veranstaltungen

18. Chemnitzer Linux-Tage: "Es ist Dein Projekt"

10.02.2016 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weltweit genaueste optische Einzelionen-Uhr

10.02.2016 | Geowissenschaften

Genauer messen in kurzer Zeit

10.02.2016 | Physik Astronomie

Protein steuert Fetteinlagerung und Leberstoffwechsel

10.02.2016 | Förderungen Preise