Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Timing in the Animal Realm

03.12.2012
To do the right thing in the right place at the right time: How animals accomplish this to ensure their survival is being studied at the University of Würzburg – at a new Collaborative Research Center funded by the German Research Foundation with about seven million euros.
Fruit flies always emerge from the pupal stage early in the morning when there is high humidity. In the middle of the day, their tender wings would be at too much risk of drying out before having properly hardened. An inner clock helps them not to miss the right time of emergence.

Many flowers are not opened all day long. In order to provide themselves reliably with pollen and nectar, honey bees are able to remember up to nine times of the day so that they can virtually execute a flower visiting plan. In the afternoon, for instance, they make a beeline for flowers that are only opened in the afternoon.

Desert ants make many turns in various directions when foraging for food. When they have found a food item, however, they return to the nest in the most direct way so as to get out of the life-threatening heat as fast as possible. Without satellite navigation, they are able to "calculate" the shortest route home, just using the sun as a compass.

Timing: a largely unexplored field

These examples show: Timing is everything – not only in the everyday life of humans. All organisms follow certain time schedules. This protects them from heat, cold and other unfavorable environmental conditions, ensures access to food and generally promotes their survival. In order to keep to the schedules, animals have developed various mechanisms, some of which are little known to science. These include internal clocks as well as impressive learning and memory capabilities.

Timing in the animal realm: This largely unexplored field is now being studied by researchers of the University of Würzburg at a newly established Collaborative Research Center. They are going to analyze several timing mechanisms in solitary and social insects – at the level of nervous systems, sensory and nerve cells as well as molecules. They are also examining the relevance of the timing mechanisms in terms of development, reproduction, social behavior and adaptation to the environment. The results will enable the researchers to draw conclusions about other animals and humans as well. This is because the internal clocks haven't changed much in the course of evolution.

Looking at complex biological communities

In order to determine how timing works in animals, the Würzburg biologists also examine complex biological communities in outdoor environments, such as the system "fungus – plant – aphid – ladybug": When aphids suck at certain grasses, the plants defend themselves by mixing bitter-tasting substances into their sap. The bitter substances come from a fungus that lives in symbiosis with the grasses.

Now, the aphid colony needs good timing: At which point does the sap become so unpalatable that switching to another host is worth the trouble? Incidentally, switching hosts is not that simple, requiring the ability to fly. However, the aphids solve the problem in an elegant way: When the sap of the grass becomes too bitter, they simply produce offspring endowed with wings. How does this happen? And how do the aphids react when – as a new threat in addition to the problem with the bitter sap – ladybugs, which are known to snack on the occasional louse, enter the game? This project will also be undertaken by the Würzburg scientists at the new Collaborative Research Center.

Information on the Collaborative Research Center

The studies are funded by the German Research Foundation (DFG). Over the coming four years, the foundation is going to invest about seven million euros in the Würzburg Collaborative Research Center "Insect timing: mechanisms, plasticity and interactions", which will be launched on 1 January 2013. About 70 persons participate in the program; Professor Charlotte Förster is the spokesperson. She is the chair of the Department for Neurobiology and Genetics at the Biocenter of the University of Würzburg.

Collaborative Research Centers are considered flagship projects certifying the excellent research quality of the respective universities. They are subject to a strict review procedure before being approved by the DFG; there is a fierce competition for the funds. Collaborative Research Centers are granted for an initial funding period of four years. After reviewing them anew, the DFG can extend this period by another four years with a maximum funding duration of twelve years.

Departments involved

The new Collaborative Research Center primarily concerns scientists at the Biocenter of the University of Würzburg, including the Departments of Neurobiology and Genetics, Zoology II (Behavioral Physiology and Sociobiology), Zoology III (Animal Ecology and Tropical Biology), Botany I (Molecular Plant Physiology and Biophysics) and the Departments of Biochemistry and Pharmaceutical Biology.

The Department of Physiology, the Rudolf Virchow Center for Experimental Biomedicine, the Institute for Medical Radiation and Cell Research and the Brain Research Institute of the University of Zurich are also involved.
Profiles of the participating researchers (pdf)

Contact person

Prof. Dr. Charlotte Förster, Biocenter at the University of Würzburg, T +49 (0)931 31-88823, charlotte.foerster@biozentrum.uni-wuerzburg.de

Robert Emmerich | Uni Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht Fish Oil-Diet Benefits May be Mediated by Gut Microbes
28.08.2015 | University of Gothenburg

nachricht Bio-fabrication of Artificial Blood Vessels with Laser Light
28.08.2015 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

Im Focus: Optische Schalter - Lernen mit Licht

Einem deutsch-französischen Team ist es gelungen, einen lichtempfindlichen Schalter für Nervenzellen zu entwickeln. Dies ermöglicht neue Einblicke in die Funktionsweise von Gedächtnis und Lernen, aber auch in die Entstehung von Krankheiten.

Lernen ist nur möglich, weil die Verknüpfungen zwischen den Nervenzellen im Gehirn fortwährend umgebaut werden: Je häufiger bestimmte Reizübertragungswege...

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

Im Focus: Membranprotein in Bern erstmals entschlüsselt

Dreidimensionale (3D) Atommodelle von Proteinen sind wichtig, um deren Funktion zu verstehen. Dies ermöglicht unter anderem die Entwicklung neuer Therapieansätze für Krankheiten. Berner Strukturbiologen ist es nun gelungen, die Struktur eines wichtigen Membranproteins zu entschlüsseln – dies gelingt relativ selten und ist eine Premiere in Bern.

Membranproteine befinden sich in den Wänden der Zellen, den Zellmembranen, und nehmen im menschlichen Körper lebenswichtige Funktionen wahr. Zu ihnen gehören...

Im Focus: Quantenbeugung an einem Hauch von Nichts

Die Quantenphysik besagt, dass sich auch massive Objekte wie Wellen verhalten und scheinbar an vielen Orten zugleich sein können. Dieses Phänomen kann nachgewiesen werden, indem man diese Materiewellen an einem Gitter beugt. Eine europäische Kollaboration hat nun erstmals die Delokalisation von massiven Molekülen an einem Gitter nachgewiesen, das nur noch eine einzige Atomlage dick ist. Dieses Experiment lotete die technischen Grenzen der Materiewellentechnologie aus und knüpft dabei an ein Gedankenexperiment von Bohr und Einstein an. Die Ergebnisse werden aktuell im Journal "Nature Nanotechnology" veröffentlicht.

Die quantenmechanische Wellennatur der Materie ist die Grundlage für viele moderne Technologien, wie z. B. die höchstauflösende Elektronenmikroskopie, die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Erforschung von Sauerstoffminimumzonen: Internationales Expertenteam erarbeitet Weißbuch

31.08.2015 | Veranstaltungen

Gravitationswellen im Einsteinjahr

28.08.2015 | Veranstaltungen

Strömungen in industriellen Anlagen sichtbar gemacht

28.08.2015 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Tomatensuppe für die Nanopartikel-Forschung

31.08.2015 | Biowissenschaften Chemie

Erforschung von Sauerstoffminimumzonen: Internationales Expertenteam erarbeitet Weißbuch

31.08.2015 | Veranstaltungsnachrichten

GI-Innovationspreis für mobiles Laser-Scanning

31.08.2015 | Förderungen Preise