Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Think big! Bakterien überwinden Grenze der Zellteilungsgröße

15.09.2014

Stellen Sie sich vor, es wäre ganz normal, dass wir Menschen zwischen 0,6 und 6 m groß sind. Absurd! Es gibt jedoch Bakterien, bei denen ein zehnfacher Größenunterschied gang und gäbe ist. Obwohl man die größten unter ihnen sogar mit freiem Auge erkennen kann, vermehren sie sich jedoch durch konventionelle Zellteilung. Silvia Bulgheresi und ihr Team vom Department für Ökogenomik und Systembiologie der Universität Wien haben diese überraschenden Umstände entdeckt und publizieren dazu aktuell in der renommierten Zeitschrift Nature Communications.

Das Leben einer Zelle ist ziemlich einfach: Sie verdoppelt ihre Größe, teilt sich in der Mitte, und es kommen zwei idente Tochterzellen heraus. Dann beginnt der Zyklus wieder von Neuen. Bisher wurde angenommen, dass sich Zellen derselben Population in ihrer Größe kaum unterscheiden und dass diese konventionelle Zellteilung auf Bakterien mit normaler Größe beschränkt ist (z.B. Escherichia coli ist 2 Mikrometer lang).


Abb.1: Mikroskopische Aufnahme eines Eubostrichus fertilis Wurms (links). Die sichelförmigen bakteriellen Zellen sind auf seiner Oberfläche wie Schichten einer Zwiebel angeordnet (rechts).

(Copyright: Silvia Bulgheresi)


Abb. 2: Mikroskopische Aufnahme eines Eubostrichus dianeae Wurms (links). Sein Fell besteht aus fadenförmigen bakteriellen Zellen; jede Zelle ist nur mit einen Ende auf der Wurm-Oberfläche befestigt.

(Copyright: Silvia Bulgheresi)

Die traditionelle Zellbiologie konzentrierte sich daher auf wenige kultivierbare Organismen und hat dabei die Reproduktion der natürlich vorkommenden Organismen etwas vernachlässigt. Silvia Bulgheresi und ihr Team vom Department für Ökogenomik und Systembiologie der Universität Wien entdeckten nun auf den zwei marinen Fadenwürmern Eubostrichus fertilis und E. dianeae Bakterien, die sich auf die übliche Weise – also durch konventionelle Zellteilung – vermehren, obwohl sie so groß sind, dass man sie mit freiem Auge erkennen kann.

Überraschende Größenverhältnisse

"Die Mikroorganismen, die auf der Oberfläche der marinen, tropischen Würmer gedeihen, sind voller Überraschungen“, berichtet Umweltmikrobiologin Silvia Bulgheresi. Sie war es auch, die 2012 in einer Studie nachwies, dass einige stäbchenförmige Bakterien in der Lage sind, sich längs zu teilen. Die bakterielle Zellteilung ist aufgrund der aktuellen Forschung um eine Facette reicher geworden:

Denn die großen, sichelförmigen Bakterien, die die Oberfläche von E. fertilis bedecken, sind mit beiden Enden befestigt, sodass der Wurm wie ein Seil aussieht (Abb. 1). Wenn man sich den Wurm genauer ansieht, kann man erkennen, dass die kleinsten Zellen an der Wurmoberfläche sind und wie Schichten einer Zwiebel von immer größer werdenden Zellen bedeckt werden. Dabei beträgt der Größenunterscheid zwischen den kleinsten und den größten Zellen ein Zehnfaches.

"Nachdem wir tausende solcher Zellen fotografiert und analysiert haben, konnten wir zeigen, dass dieser unerwartete Größenunterschied daher rührt, dass sich die Bakterien bei jeder Länge zwischen 3 und 45 Mikrometer teilen können", so Bulgheresi.

"Erwachsene Menschen können – laut Guiness Buch der Rekorde – zwischen 0,6 und 2,6 m variieren. Wenn wir aber E. fertilis-Bakterien wären, würden wir zwischen 0,6 und 6 m groß sein. Aber noch außergewöhnlicher ist, dass die Wahrscheinlichkeit, eine 1 m oder eine 6 m große Person zu treffen, die gleiche wäre", erklärt Nikolaus Leisch. Er und Nika Pende sind die ErstautorInnen der Studie. Beide machen ihren PhD im Team von Silvia Bulgheresi an der Universität Wien.

Auf dem Wurm E. dianeae sind die riesigen, fadenförmigen Bakterien nur mit einem Ende an dessen Oberfläche befestigt, sodass sie wie ein dichtes Fell wirken (Abb. 2). Ein einzelnes "Fellhaar" kann bis zu einem Zehntelmillimeter lang werden – Menschen mit guten Sehvermögen können dies noch mit freiem Auge erkennen.

"In unserer Studie konnten wir zeigen, dass die bis zu 120 Mikrometer langen bakteriellen Partner von E. dianeae die längsten Bakterien sind, die im Stande sind, sich so zu teilen wie das bekannte, aber deutlich kleinere Escherichia coli Bakterium", erklärt PhD Studentin Nika Pende. Ergänzend meint sie: "Was wir jetzt noch unbedingt herausfinden wollen, ist, wie diese riesigen Zellen es schaffen, sich genau in der Mitte zu teilen und dadurch zwei idente Tochterzellen hervorzubringen."

Weitere Schlüsselfragen des Teams um Silvia Bulgheresi sind: Was lässt die mit den Eubostrichus Würmern assoziierten Bakterien so groß wachsen? – Warum sind die Bakterien so unterschiedlich auf ihren jeweiligen tierischen Partner angeordnet? Die WissenschafterInnen verwenden neueste mikroskopische Techniken und arbeiten zu diesem Thema auch mit der Universität Amsterdam zusammen.

Eine mögliche Antwort wäre, dass sich die jeweiligen bakteriellen Anordnungen individuell entwickelt haben, um sich das Optimum aus dieser engen Partnerschaft mit dem Wurm zu holen. "Menschen tragen durchschnittlich 1 kg Mikroorganismen mit sich, und diese können selbstverständlich auch unsere Gesundheit beeinflussen. Bedenkt man dies, ist es wichtig, mehr über die Faktoren, die die Vermehrung von Mikroorganismen steuern, zu wissen", sagt Umweltmikrobiologin Silvia Bulgheresi abschließend.

Wissenschaftliche Publikation:
Pende N., Leisch N., Gruber-Vodicka H.R., Heindl N.R., Ott J.A., den Blaauwen T. and Bulgheresi S: Size-independent symmetric division in extraordinarily long cells. Nature Communications, September 15, 2014. DOI: 10.1038/ncomm5803

Wissenschaftlicher Kontakt:
Dr. Silvia Bulgheresi
Department für Ökogenomik und Systembiologie
Universität Wien
1090 Vienna, Althanstraße 14
T +43-1-4277-765 14
M +43-676-454 60 61
silvia.bulgheresi@univie.ac.at

Rückfragehinweis
Mag. Veronika Schallhart
Pressebüro der Universität Wien
Forschung und Lehre
Universität Wien
1010 Wien, Universitätsring 1
T +43-1-4277-175 30
M +43-664-602 77-175 30
veronika.schallhart@univie.ac.at

Die Universität Wien ist eine der ältesten und größten Universitäten Europas: An 15 Fakultäten und vier Zentren arbeiten rund 9.700 MitarbeiterInnen, davon 6.900 WissenschafterInnen. Die Universität Wien ist damit auch die größte Forschungsinstitution Österreichs sowie die größte Bildungsstätte: An der Universität Wien sind derzeit rund 92.000 nationale und internationale Studierende inskribiert. Mit über 180 Studien verfügt sie über das vielfältigste Studienangebot des Landes. Die Universität Wien ist auch eine bedeutende Einrichtung für Weiterbildung in Österreich. 1365 gegründet, feiert die Alma Mater Rudolphina Vindobonensis im Jahr 2015 ihr 650-jähriges Gründungsjubiläum. www.univie.ac.at

Weitere Informationen:

http://www.univie.ac.at - Universität Wien

Veronika Schallhart | Universität Wien

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Auf der molekularen Streckbank
24.02.2017 | Technische Universität München

nachricht Sicherungskopie im Zentralhirn: Wie Fruchtfliegen ein Ortsgedächtnis bilden
24.02.2017 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: „Vernetzte Autonome Systeme“ von acatech und DFKI auf der CeBIT

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) in Kooperation mit der Deutschen Messe AG vernetzte Autonome Systeme. In Halle 12 am Stand B 63 erwarten die Besucherinnen und Besucher unter anderem Roboter, die Hand in Hand mit Menschen zusammenarbeiten oder die selbstständig gefährliche Umgebungen erkunden.

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für...

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aufbruch: Forschungsmethoden in einer personalisierten Medizin

24.02.2017 | Veranstaltungen

Österreich erzeugt erstmals Erdgas aus Sonnen- und Windenergie

24.02.2017 | Veranstaltungen

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer HHI auf dem Mobile World Congress mit VR- und 5G-Technologien

24.02.2017 | Messenachrichten

MWC 2017: 5G-Hauptstadt Berlin

24.02.2017 | Messenachrichten

Auf der molekularen Streckbank

24.02.2017 | Biowissenschaften Chemie