Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Testing the Efficacy of New Gene Therapies More Efficiently

21.03.2017

Using a new cellular model, innovative gene therapy approaches for the hereditary immunodeficiency Chronic Granulomatous Disease can be tested faster and cost-effectively in the lab for their efficacy. A team of researchers from the University of Zurich and the Children’s Hospital Zurich successfully achieved this using the ‘gene-scissor’ CRISPR/Cas9 technology. The aim is to treat severely affected patients in the near future using novel approaches.

Chronic Granulomatous Disease is a hereditary disease of the immune system. Due to a gene defect, phagocytes of affected patients are unable to kill ingested bacteria and fungi; causing life-threatening infections and excessive inflammatory reactions that have severe adverse consequences.


Due to a gene defect, phagocytes of patients with Chronic Granulomatous Disease are unable to kill ingested bacteria and fungi.

Image: ©Dlumen / iStock

Quelle: UZH

The disease can be cured by transplanting blood-forming stem cells from the bone marrow of healthy donors. Where no matching stem cell donor is available, gene therapy can be carried out, in a few locations worldwide. Before gene therapy is used clinically in patients, efficacy of treatment must be determined in the lab on human cells; cellular models are of utmost importance for this step.

Better Cell Model Developed Thanks to 'Gene Scissors'

Recently, a research team headed by Janine Reichenbach, a UZH professor and Co-Head of the Division of Immunology at the University Children’s Hospital Zurich, has developed a new cellular model that enables to test the efficacy of new gene therapies much more efficiently. "We used Crispr/Cas9 technology to change a human cell line so that the blood cells show the genetic change typical of a specific form of Chronic Granulomatous Disease", explains the pediatrician and immunologist.

In this way, the modified cells reflect the disease genetically and functionally. Until now, scientists had to rely on using patients' skin cells that they had reprogrammed into stem cells in the lab. This approach is laborious, and requires considerable time and money. "With our new testing system, this process is faster and cheaper, enabling us to develop new gene therapies for affected patients more efficiently", says Janine Reichenbach.

Already about ten years ago, the team of Janine Reichenbach initiated the worldwide first clinically successful gene therapy study for the treatment of children with Chronic Granulomatous Disease – headed at that time by UZH's now emeritus Professor Reinhard Seger. The principle was to isolate blood-forming stem cells from the patient's bone marrow, transfer a healthy copy of the diseased gene into these cells in the lab, and infuse the gene-corrected cells back into the blood of the patient. The corrected blood stem cells find their way back to the bone marrow where they engraft and produce healthy immune cells.

New ‘Gene Ferries’ Make Gene Therapy Safer

To transfer the healthy copy of the gene into diseased cells, until now modified artificial viruses have been used as transport vehicle for the correcting genes. Despite curing the primary disease, gene therapies using first generation viral gene correction systems are now outdated, due to the development of malignant cancer cells in some patients in European studies.

Janine Reichenbach's team currently works with a new improved ‘gene ferry’. "Today, we dispose of so-called lentiviral self-inactivating gene therapy systems that are efficient and, above all, that work more safely". The University Children’s Hospital Zurich is one of three European centers able to use this new gene therapy in an international clinical phase I/II study to treat patients with Chronic Granulomatous Disease (EU-FP7 program NET4CGD).

Future of Gene Therapy: Precise Repair of Defective Genes

For Janine Reichenbach's team, such new ‘gene ferries’ are only an intermediate step. In future, gene defects shall no longer be treated by adding a functioning gene using viral ‘gene ferries’, but instead are repaired with pinpoint precision using genome editing. Crispr/Cas9 is key here too.

However, it will need another five to six years until this 'precision gene surgery' is ready for clinical applications. Janine Reichenbach appears optimistic. "Within the framework of University Medicine Zurich, we have the technical, scientific and medical know-how on site to develop new therapies for patients with severe hereditary diseases faster and establish UZH as an international competence center of excellence for gene and cell therapies in the future."

Literature:
Dominik Wrona, Ulrich Siler, Janine Reichenbach. CRISPR/Cas9-generated p47phox-deficient cell line for Chronic Granulomatous Disease gene therapy vector development. Scientific Reports. March 13, 2017. DOI: 10.1038/srep44187

Contact:
Prof. Janine Reichenbach, M.D.
Pediatric Immunology
University Children’s Hospital Zurich
Phone: + 41 44 266 73 11
E-mail: janine.reichenbach@kispi.uzh.ch

Weitere Informationen:

http://www.media.uzh.ch/en/Press-Releases/2017/testing-gene-therapies-efficientl...

Kurt Bodenmüller | Universität Zürich

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen
20.09.2017 | Veterinärmedizinische Universität Wien

nachricht Molekulare Kraftmesser
20.09.2017 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik