Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Temple scientists target DNA repair to eradicate leukemia stem cells

10.12.2012
Despite treatment with imatinib, a successful drug that targets chronic myeloid leukemia (CML), a deadly type of cancer, some patients may continue to be at risk for relapse because a tiny pool of stem cells is resistant to treatment and may even accumulate additional genetic aberrations, eventually leading to disease progression and relapse. These leukemia stem cells are full of genetic errors, loaded with potentially lethal breaks in DNA, and are in a state of constant self-repair.

Now, scientists at Temple University School of Medicine may have figured out a way to corral this stem cell activity and stunt further cancer development. In a series of experiments in mice with cancer and in cancer cells, they have shown that they can block the process by which leukemia stem cells repair themselves by targeting a particular protein, RAD52, which the cells depend on to fix genetic mistakes.

The findings may lead to a new strategy to help overcome drug resistance that hinges on cancer stem cells gone awry.

The researchers report their findings December 9 in a plenary scientific session at the 54th American Society of Hematology Annual Meeting and Exposition in Atlanta.

"We would like to eradicate the leukemia stem cells and cure patients with CML," said senior author Tomasz Skorski, MD, PhD, Professor of Microbiology and Immunology at Temple University School of Medicine. "We took advantage of the fact that remaining leukemia stem cells accumulate lots of lethal DNA lesions, but they don't die because they can repair them very efficiently. We attacked the DNA repair pathway in a way that is not going to harm normal cells, which have a different repair mechanism than leukemia cells."

Targeting Key Repair Protein

The trick, the researchers say, lies in a process called "synthetic lethality," which is defined as a genetic combination of mutations in two or more genes that leads to cell death, whereas a mutation in any single gene does not. In synthetic lethality, cancer cells may accumulate mutations fostering their growth, enabling them to sidestep certain types of anticancer treatments. But these same genetic mutations may make them vulnerable to a different type of therapy.

In CML, an enzyme called ABL1 goes into overdrive because of a chromosomal mix-up that occurs in bone marrow stem cells that are responsible for the generation of all blood components. The genes ABL1 and BCR become fused and produce a hybrid BCR-ABL1 enzyme that is always turned on. This overactive BCR-ABL1 protein drives the excessive production of white blood cells that is the hallmark of CML.

CML is also marked by genomic instability, which can result in mutations that cause the cancer to become resistant to potent targeted anticancer drugs called tyrosine kinase inhibitors (TKIs), such as imatinib (Gleevec), leading to disease relapse and perhaps to the deadlier blast stage of the disease. One of the most common types of DNA damage is a "double-strand break," which entails severing both of the complementary strands of DNA that make up the double helix.

In CML cells, the BCR-ABL1 protein shuts down the main DNA repair system and leukemia cells have to rely on a backup pathway for repair. Previous experiments in mice bone marrow cells lacking RAD52, a key protein in the backup system, showed that its absence abrogated the development of CML, proving that CML DNA repair depended on RAD52.

"Earlier research by Temple investigators found that the presence of the RAD52 gene is a key factor for the development of the leukemia," explained first author Kimberly Cramer, PhD, a postdoctoral fellow in the Department of Microbiology and Immunology at Temple's School of Medicine. The researchers took advantage of the fact that when the RAD52 protein is mutated in some way, it can no longer bind to DNA, which is crucial to fixing broken DNA. Using the same bone marrow cells that lacked RAD52, they re-expressed either normal RAD52 or, more importantly, either of two mutated forms of RAD52 to see what would happen when RAD52 could not bind to DNA anymore.

They found that when the mutant RAD52 proteins were expressed in the presence of BCR-ABL1, there were more double-strand breaks formed, which was accompanied by a decrease in the survival and expansion of leukemia stem cells. The team then used an "aptamer," a peptide that mimicked the area where the RAD52 protein binds to DNA, to see the effects of blocking RAD52 from binding to DNA. The investigators found that when the aptamer was added to BCR-ABL1-positive bone marrow cells, RAD52 was prevented from binding to DNA and the leukemic bone marrow cells accumulated excessive double-strand breaks and eventually died. The aptamer had no effect on normal cells.

Personalizing Therapies

"With this treatment in hand, we eventually hope to generate a small molecule inhibitor with which we will be able to target leukemia patients based on their oncogenic profiles," Dr. Cramer said.
Dr. Skorski added that such profiling strategies could likely be extended to other cancers as well. "We've started to use microarrays to look at the expression profiles of the DNA repair genes in other cancers, and based on these profiles, predicted if they would be sensitive to 'synthetic lethality' triggered by our approach," he said. "We'd like to personalize treatments."

Other investigators who contributed to the research include Artur Slupianek, Temple University School of Medicine; Kimberly Haas and Wayne Childers, Temple University School of Pharmacy; Tomasz Sliwinski, University of Lodz, Lodz, Poland; and David Irvine and Mhairi Copland, University of Glasgow, Glasgow, United Kingdom; Michelle Padget, Kara Scheibner and Curt Civin, University of Maryland, Baltimore; and Jaewoong Lee and Marcus Muschen, University of California, San Francisco.

The research was supported by funding from the National Institutes of Health grants 1R21CA133646 and 1R01CA89052, and from Temple University.

About Temple Health

Temple Health refers to the health, education and research activities carried out by the affiliates of Temple University Health System and by Temple University School of Medicine.

Temple University Health System (TUHS) is a $1.4 billion academic health system dedicated to providing access to quality patient care and supporting excellence in medical education and research. The Health System consists of Temple University Hospital (TUH), ranked among the "Best Hospitals" in the region by U.S. News & World Report; TUH-Episcopal Campus; TUH-Northeastern Campus; Fox Chase Cancer Center, an NCI-designated comprehensive cancer center; Jeanes Hospital, a community-based hospital offering medical, surgical and emergency services; Temple Transport Team, a ground and air-ambulance company; and Temple Physicians, Inc., a network of community-based specialty and primary-care physician practices. TUHS is affiliated with Temple University School of Medicine.

Temple University School of Medicine (TUSM), established in 1901, is one of the nation's leading medical schools. Each year, the School of Medicine educates approximately 720 medical students and 140 graduate students. Based on its level of funding from the National Institutes of Health, Temple University School of Medicine is the second-highest ranked medical school in Philadelphia and the third-highest in the Commonwealth of Pennsylvania. According to U.S. News & World Report, TUSM is among the top 10 most applied-to medical schools in the nation.

Steven Benowitz | EurekAlert!
Further information:
http://www.temple.edu

More articles from Life Sciences:

nachricht An evolutionary heads-up – The brain size advantage
22.05.2015 | Veterinärmedizinische Universität Wien

nachricht Endocrine disrupting chemicals in baby teethers
21.05.2015 | Goethe-Universität Frankfurt am Main

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kieler Forschende bauen die kleinsten Maschinen der Welt

Die DFG stellt Millionenförderung für die Entwicklung neuartiger Medikamente und Materialien an der Christian-Albrechts-Universität zu Kiel (CAU) bereit.

Großer Jubel an der Christian-Albrechts-Universität zu Kiel (CAU): Wie die Deutsche Forschungsgemeinschaft (DFG) heute (Donnerstag, 21. Mai) bekannt gab,...

Im Focus: Basler Physiker entwickeln Methode zur effizienten Signalübertragung aus Nanobauteilen

Physiker haben eine innovative Methode entwickelt, die den effizienten Einsatz von Nanobauteilen in elektronische Schaltkreisen ermöglichen könnte. Sie entwickelten dazu eine Anordnung, bei der ein Nanobauteil mit zwei elektrischen Leitern verbunden ist. Diese bewirken eine hocheffiziente Auskopplung des elektrischen Signals. Die Wissenschaftler vom Departement Physik und dem Swiss Nanoscience Institute der Universität Basel haben ihre Ergebnisse zusammen mit Kollegen der ETH Zürich in der Fachzeitschrift «Nature Communications» publiziert.

Elektronische Bauteile werden immer kleiner. In Forschungslabors werden bereits Bauelemente von wenigen Nanometern hergestellt, was ungefähr der Grösse von...

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: Phagen übertragen Antibiotikaresistenzen auf Bakterien – Nachweis auf Geflügelfleisch

Bakterien entwickeln immer häufiger Resistenzen gegenüber Antibiotika. Es gibt unterschiedliche Erklärungen dafür, wie diese Resistenzen in die Bakterien gelangen. Forschende der Vetmeduni Vienna fanden sogenannte Phagen auf Geflügelfleisch, die Antibiotikaresistenzen auf Bakterien übertragen können. Phagen sind Viren, die ausschließlich Bakterien infizieren können. Für Menschen sind sie unschädlich. Phagen könnten laut Studie jedoch zur Verbreitung von Antibiotikaresistenzen beitragen. Die Erkenntnisse sind nicht nur für die Lebensmittelproduktion sondern auch für die Medizin von Bedeutung. Die Studie wurde in der Fachzeitschrift Applied and Environmental Microbiology veröffentlicht.

Antibiotikaresistente Bakterien stellen weltweit ein bedeutendes Gesundheitsrisiko dar. Gängige Antibiotika sind bei der Behandlung von Infektionskrankheiten...

Im Focus: Die schreckliche Schönheit der Medusa

Astronomen haben mit dem Very Large Telescope der ESO in Chile das bisher detailgetreueste Bild vom Medusa-Nebel eingefangen, das je aufgenommen wurde. Als der Stern im Herzen dieses Nebels altersschwach wurde, hat er seine äußeren Schichten abgestoßen, aus denen sich diese farbenfrohe Wolke bildete. Das Bild lässt erahnen, welches endgültige Schicksal die Sonne einmal ereilen wird: Irgendwann wird aus ihr ebenfalls ein Objekt dieser Art werden.

Dieser wunderschöne Planetarische Nebel ist nach einer schrecklichen Kreatur aus der griechischen Mythologie benannt – der Gorgone Medusa. Er trägt auch die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

TU Darmstadt: Gipfel der Verschlüsselung - CROSSING-Konferenz am 1. und 2. Juni in Darmstadt

22.05.2015 | Veranstaltungen

Internationale neurowissenschaftliche Tagung

22.05.2015 | Veranstaltungen

Biokohle-Forscher tagen in Potsdam

21.05.2015 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nanogefäß mit einer Perle aus Gold

22.05.2015 | Biowissenschaften Chemie

Ferngesteuerte Mikroschwimmer: Jülicher Physiker simulieren Bewegungen von Bakterien an Oberflächen

22.05.2015 | Physik Astronomie

Was Chromosomen im Innersten zusammenhält

22.05.2015 | Biowissenschaften Chemie