Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Temperaturschalter für negative Erinnerungen

16.07.2010
Neurobiologen können einzelne Nervenzellen gezielt aktivieren und so die Verknüpfung von Sinneseindrücken und negativen Erfahrungen studieren.

Für ein langes und gesundes Leben ist es durchaus hilfreich zu lernen, welche Dinge und Situationen schädlich sind. So lernen die meisten von uns zum Beispiel durch schmerzhaften Sonnenbrand, sich das nächste Mal vor dem Sonnenbad einzucremen. Wie wichtig solche erlernten Vermeidungsstrategien sind zeigt, dass selbst Fruchtfliegen dazu in der Lage sind. Sie können lernen, einen Duft und einen Stromimpuls in Verbindung zu bringen und die Duftquelle daraufhin in Zukunft zu meiden.


Dopamin-ausschüttende Nervenzellen, die in den Pilzkörper des Fliegenhirns hineinragen. Neurobiologen konnten nun zeigen, dass drei Nervenzellen die Verbindung zwischen einem negativen Erlebnis mit einem Geruch herstellen.
Bild: Max-Planck-Gesellschaft

Wissenschaftler des Max-Planck-Instituts für Neurobiologie konnten nun drei Nervenzellen identifizieren, die bei diesem komplexen Vorgang eine Rolle spielen. Dabei gelang es ihnen, einzelne Zellen gezielt durch Veränderungen der Umgebungstemperatur an- bzw. abzuschalten - und das, während sich die Tiere frei bewegten und lernten (Current Biology, 15. Juli 2010).

Vermeiden ist gut. Natürlich gilt das nicht generell, doch in vielen Fällen bewahrt uns eine Vermeidungsstrategie davor, Schaden zu nehmen. So lernt ein Kind sehr schnell, die Finger vom heißen Herd zu lassen, wenn es sich einmal verbrannt hat. Das Prinzip dieses erlernten Vermeidens ist so essenziell, dass selbst die vergleichsweise einfachen Gehirne von Fruchtfliegen dazu in der Lage sind. Bietet man Fruchtfliegen zum Beispiel einen bestimmten Duft zusammen mit einem Stromimpuls an, so lernen die Tiere schon nach wenigen Versuchen diesen Duft zu meiden - sie laufen oder fliegen in die entgegengesetzte Richtung. Doch was passiert im Gehirn, wenn solch unterschiedliche Reize wie ein Duft und ein Stromimpuls miteinander verbunden werden und dies zu einer Verhaltensänderung führt? Dieser grundlegenden Frage sind Wissenschaftler des Max-Planck-Instituts für Neurobiologie in Martinsried auf der Spur.

Die Vorteile der Fruchtfliege

Am Modell der Fruchtfliege untersucht die Max-Planck-Forschungsgruppe "Verhaltensgenetik" unter der Leitung von Hiromu Tanimoto, was im Gehirn passiert, wenn die Tiere lernen etwas zu vermeiden. Die Frage drängt sich auf, warum die Wissenschaftler dies ausgerechnet an der Fruchtfliege untersuchen, deren Gehirn zugegebenermaßen winzig ist. Das hat zweierlei Gründe: Zum einen ist das Gehirn dieser Tiere mit knapp Hunderttausend Nervenzellen deutlich einfacher aufgebaut, als zum Beispiel ein menschliches Gehirn mit rund hundert Milliarden Nervenzellen. In der Fruchtfliege ist es daher deutlich einfacher, die Zellen zu identifizieren, die für das Entstehen von Vermeidungsverhalten wichtig sind. Zum anderen gibt es für die Fruchtfliege eine große Bandbreite an genetischen Werkzeugen, mit denen zum Beispiel bestimmte Gehirnfunktionen gezielt aktiviert oder ausgeschaltet werden können.

"Genau diese Vorteile haben wir uns zunutze gemacht", berichtet Hiromu Tanimoto. Die Wissenschaftler wussten, dass die Verknüpfung von Geruch und Stromimpuls innerhalb des Pilzkörpers geschieht - einer Struktur im Fliegenhirn mit rund 2000 Nervenzellen. Zudem ist bekannt, dass der Botenstoff Dopamin wichtig ist, damit die Fliegen lernen können, eine potenzielle Gefahr mit einem Geruch zu verknüpfen. Welche Dopamin-ausschüttenden Zellen dies jedoch genau ermöglichten, das blieb weiterhin unklar.

Manipulation ohne direkten Eingriff

"Die Schwierigkeit bestand darin, dass wir wissen mussten, welche Nervenzellen Dopamin ausschütten, während die Fliegen herumrennen und lernen, einen Duft zu vermeiden", fasst Tanimoto die Herausforderung zusammen. Genau das ist den Neurobiologen nun gelungen. Sie bauten einen "Temperaturschalter" in die Dopamin-ausschüttenden Nervenzellen ein, die mit den Zellen des Pilzkörpers in Kontakt stehen. "In der einen Gruppe von Fliegen führte das eingeschleuste Gen dazu, dass eine leichte Erhöhung der Raumtemperatur die Nervenzellen aktivierte, sodass diese Dopamin freisetzten; in einer zweiten Fliegengruppe führte ein anderes Gen dazu, dass die Temperaturerhöhung die Nervenzellen inaktivierte, egal welche Reize wir den Tieren anboten", so Tanimoto. Auf diese Weise konnten die Wissenschaftler zeigen, dass drei Dopamin-ausschüttende Zellen aktiv sein müssen, damit ein wahrgenommener Duft mit einem negativen Erlebnis verknüpft wird. Die entscheidende Rolle dieser Zellen war eindeutig: Wurden die drei Nervenzellen über eine Temperaturerhöhung aktiviert während die Fliegen einen Duft wahrnahmen, so lernten die Tiere den Duft zu vermeiden - und das selbst dann, wenn der Stromimpuls als negative Beziehung zu dem Duft fehlte.

"Wir können jetzt tatsächlich die Funktion einzelner Nervenzellen in einem sich frei bewegenden Tier untersuchen - das eröffnet ganz neue Möglichkeiten", freut sich Yoshinori Aso über den Erfolg seiner Arbeit. Nun wollen die Wissenschaftler Schritt zu Schritt entschlüsseln, wie Erlebnisse miteinander verknüpft werden, und wie daraus eine Verhaltensänderung entsteht.

Originalveröffentlichung:

Yoshinori Aso, Igor Siwanowicz, Lasse Bräcker, Kei Ito, Toshihiro Kitamoto, Hiromu Tanimoto

Specific dopaminergic neurons for the formation of labile aversive memory

Current Biology, online Veröffentlichung vom 15. Juli 2010

Weitere Informationen erhalten Sie von:

Dr. Stefanie Merker, Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: +49 89 8578-3514
E-Mail: merker@neuro.mpg.de

Barbara Abrell | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de
http://goto.mpg.de/mpg/pri/201007141/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Software mit Grips
20.04.2018 | Max-Planck-Institut für Hirnforschung, Frankfurt am Main

nachricht Einen Schritt näher an die Wirklichkeit
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics