Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn Teilchen eng zusammenrücken - Bislang kürzeste Kohlenstoff-Chlor-Einfachbindung entdeckt

04.05.2009
Die Beschreibung von Verbindungen und Wechselwirkungen zwischen Atomen ist eine der Grundaufgaben der Chemie. Zwar existieren bereits chemische Bindungsmodelle, die diese Eigenschaften sehr gut beschreiben.

Allerdings kann jede Abweichung von den normalen Gegebenheiten dazu beitragen, die Modelle weiter zu verbessern. Chemiker um Professor Thomas M. Klapötke von der Ludwig-Maximilians-Universität (LMU) München haben nun ein Molekül analysiert, das einen extrem kurzen Bindungsabstand aufweist.

Wie die Forscher in "Nature Chemistry" berichten, sind das Kohlenstoff- und Chloratom im sogenannten Chlortrinitromethan Molekül lediglich 1,69 Angström voneinander entfernt. "Für diesen kurzen Abstand sind nicht-kovalente Wechselwirkungen mit entscheidend", erklärt Göbel, aus dessen Doktorarbeit die neuen Ergebnisse hervorgegangen sind. "Ein besseres Verständnis dieser Wechselwirkungen ist hilfreich in allen Bereichen in denen molekulare Erkennung und Selbstaufbau eine Rolle spielen." (Nature Chemistry online, 3. Mai 2009).

Chemische Bindungsmodelle, die die Eigenschaften von Atomverbindungen beschreiben, existieren bereits seit über hundert Jahren. Diese Modelle untersuchen unter anderem die elektrostatischen Wechselwirkungen zwischen Atomen, also deren wechselseitige Anziehung oder Abstoßung. Allerdings werden hier meist nur die direkt an der Bindung beteiligten Atome betrachtet, während der Einfluss weiter entfernter Atome unberücksichtigt bleibt. Nun konnte das Team um Professor Thomas M. Klapötke vom Department Chemie und Biochemie, das sich vordringlich mit der Synthese und Erforschung neuer, hochenergetischer Materialien beschäftigt, erstmals nachweisen, dass auch die zweiten und dritten Nachbarn einen entscheidenden Einfluss auf die Eigenschaften einer Atombindung haben können.

Die Forscher wählten für ihre Untersuchung das sogenannte Chlorotrinitromethan-Molekül aus, eine Verbindung bestehend aus dem Halogen Chlor und dem Pseudohalogen Trinitromethyl. Letzteres setzt sich aus einem Kohlenstoffatom und drei Nitrogruppen zusammen. Die Trinitromethyl-Einheit zählt zur Gruppe der Pseudohalogene, die ähnliche Eigenschaften wie Halogene besitzen: Beide Gruppen setzen sich aus Nichtmetallen zusammen, die meist in gasförmiger oder flüssiger Form vorliegen und zusammen mit Metallen Salze ausbilden. Anders als die Halogene sind die Pseudohalogene jedoch keine echten chemischen Elemente, sondern chemische Verbindungen aus verschiedenen Elementen.

Mithilfe der so genannten Röntgenstrukturanalyse gelang es den Forschern erstmals, die innere Struktur des Chlorotrinitromethan-Moleküls zu rekonstruieren und Rückschlüsse über die Abstände zwischen den einzelnen Atomen zu ziehen. Bei ihren Analysen stießen die Chemiker auf eine besonders interessante Eigenschaft des Chlorotrinitromethan-Moleküls: Der Abstand zwischen seinem Chlor- und Kohlenstoffatom beträgt lediglich 1,69 Angström. Ein Angström ist der zehnmillionste Teil eines Millimeters. Die nun nachgewiesene Distanz zwischen den Atomen ist der kürzeste je beobachtete Abstand für vergleichbare Chlor-Kohlenstoff-Einfachbindungen. Alle bisher gemessenen Abstände liegen im Bereich zwischen circa 1,71 und 1,91 Angström.

Durch theoretische Berechnungen konnten die Forscher in Kooperation mit Professor Peter Politzer und Dr. Jane S. Murray an der US-amerikanischen Universität von New Orleans zudem die Verteilung der elektrischen Ladungen innerhalb des Moleküls nachvollziehen. Dabei stellte sich heraus, dass das Chloratom ein gänzlich positives elektrostatisches Potential aufweist - ein seltener Fall, da Chlor ansonsten meist negativ polarisiert vorliegt. Zusammen mit der Ladungsverteilung der übrigen Atome erklärt dieser Befund jedoch, warum Chlor- und Kohlenstoffatom so eng miteinander verbunden sind. Die Ergebnisse zeigen eindrucksvoll, dass elektrostatische Wechselwirkungen von benachbarten Atomen einen signifikanten Einfluss auf die Bindungslänge haben können, selbst wenn diese Atome nicht direkt an einem der beiden Atome gebunden sind, die die Bindung aufbauen.

Im Fall von Chlorotrinitromethan ist dieser Effekt besonders ausgeprägt und führt zu einem ungewöhnlich kurzen Chlor-Kohlenstoff-Abstand, er könnte aber für vielfältige weitere Fälle von Bedeutung sein - insbesondere in Bereichen, wo Moleküle sich selbständig gegenseitig erkennen und zu größeren Strukturen zusammenfügen. Diese Mechanismen spielen zum Beispiel in biologischen Systemen und in der Nanotechnologie eine wichtige Rolle. (ca/suwe)

Publikation:
"Chlorotrinitromethane and its exceptionally short carbon-chlorine bond";
Michael Göbel, Boris H. Tchitchanov, Jane S. Murray, Peter Politzer und Thomas M. Klapötke;
Nature Chemistry online,
03. Mai 2009;
DOI: 10.1038/nchem.179
Ansprechpartner:
Thomas M. Klapötke
Department Chemie und Biochemie
Sektion Anorganische Molekülchemie (Inorganic Molecule Chemistry)
Tel.: +49-(0)89 / 2180 77504
Fax: +49-(0)89 / 2180 77492
E-mail: tmk@cup.uni-muenchen.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.chemie.uni-muenchen.de/ac/klapoetke/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wasserbewegung als Hinweis auf den Zustand von Tumoren
19.04.2018 | Gesellschaft Deutscher Chemiker e.V.

nachricht Verbesserte Stabilität von Kunststoff-Leuchtdioden
19.04.2018 | Max-Planck-Institut für Polymerforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Verbesserte Stabilität von Kunststoff-Leuchtdioden

19.04.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics