Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn Teilchen eng zusammenrücken - Bislang kürzeste Kohlenstoff-Chlor-Einfachbindung entdeckt

04.05.2009
Die Beschreibung von Verbindungen und Wechselwirkungen zwischen Atomen ist eine der Grundaufgaben der Chemie. Zwar existieren bereits chemische Bindungsmodelle, die diese Eigenschaften sehr gut beschreiben.

Allerdings kann jede Abweichung von den normalen Gegebenheiten dazu beitragen, die Modelle weiter zu verbessern. Chemiker um Professor Thomas M. Klapötke von der Ludwig-Maximilians-Universität (LMU) München haben nun ein Molekül analysiert, das einen extrem kurzen Bindungsabstand aufweist.

Wie die Forscher in "Nature Chemistry" berichten, sind das Kohlenstoff- und Chloratom im sogenannten Chlortrinitromethan Molekül lediglich 1,69 Angström voneinander entfernt. "Für diesen kurzen Abstand sind nicht-kovalente Wechselwirkungen mit entscheidend", erklärt Göbel, aus dessen Doktorarbeit die neuen Ergebnisse hervorgegangen sind. "Ein besseres Verständnis dieser Wechselwirkungen ist hilfreich in allen Bereichen in denen molekulare Erkennung und Selbstaufbau eine Rolle spielen." (Nature Chemistry online, 3. Mai 2009).

Chemische Bindungsmodelle, die die Eigenschaften von Atomverbindungen beschreiben, existieren bereits seit über hundert Jahren. Diese Modelle untersuchen unter anderem die elektrostatischen Wechselwirkungen zwischen Atomen, also deren wechselseitige Anziehung oder Abstoßung. Allerdings werden hier meist nur die direkt an der Bindung beteiligten Atome betrachtet, während der Einfluss weiter entfernter Atome unberücksichtigt bleibt. Nun konnte das Team um Professor Thomas M. Klapötke vom Department Chemie und Biochemie, das sich vordringlich mit der Synthese und Erforschung neuer, hochenergetischer Materialien beschäftigt, erstmals nachweisen, dass auch die zweiten und dritten Nachbarn einen entscheidenden Einfluss auf die Eigenschaften einer Atombindung haben können.

Die Forscher wählten für ihre Untersuchung das sogenannte Chlorotrinitromethan-Molekül aus, eine Verbindung bestehend aus dem Halogen Chlor und dem Pseudohalogen Trinitromethyl. Letzteres setzt sich aus einem Kohlenstoffatom und drei Nitrogruppen zusammen. Die Trinitromethyl-Einheit zählt zur Gruppe der Pseudohalogene, die ähnliche Eigenschaften wie Halogene besitzen: Beide Gruppen setzen sich aus Nichtmetallen zusammen, die meist in gasförmiger oder flüssiger Form vorliegen und zusammen mit Metallen Salze ausbilden. Anders als die Halogene sind die Pseudohalogene jedoch keine echten chemischen Elemente, sondern chemische Verbindungen aus verschiedenen Elementen.

Mithilfe der so genannten Röntgenstrukturanalyse gelang es den Forschern erstmals, die innere Struktur des Chlorotrinitromethan-Moleküls zu rekonstruieren und Rückschlüsse über die Abstände zwischen den einzelnen Atomen zu ziehen. Bei ihren Analysen stießen die Chemiker auf eine besonders interessante Eigenschaft des Chlorotrinitromethan-Moleküls: Der Abstand zwischen seinem Chlor- und Kohlenstoffatom beträgt lediglich 1,69 Angström. Ein Angström ist der zehnmillionste Teil eines Millimeters. Die nun nachgewiesene Distanz zwischen den Atomen ist der kürzeste je beobachtete Abstand für vergleichbare Chlor-Kohlenstoff-Einfachbindungen. Alle bisher gemessenen Abstände liegen im Bereich zwischen circa 1,71 und 1,91 Angström.

Durch theoretische Berechnungen konnten die Forscher in Kooperation mit Professor Peter Politzer und Dr. Jane S. Murray an der US-amerikanischen Universität von New Orleans zudem die Verteilung der elektrischen Ladungen innerhalb des Moleküls nachvollziehen. Dabei stellte sich heraus, dass das Chloratom ein gänzlich positives elektrostatisches Potential aufweist - ein seltener Fall, da Chlor ansonsten meist negativ polarisiert vorliegt. Zusammen mit der Ladungsverteilung der übrigen Atome erklärt dieser Befund jedoch, warum Chlor- und Kohlenstoffatom so eng miteinander verbunden sind. Die Ergebnisse zeigen eindrucksvoll, dass elektrostatische Wechselwirkungen von benachbarten Atomen einen signifikanten Einfluss auf die Bindungslänge haben können, selbst wenn diese Atome nicht direkt an einem der beiden Atome gebunden sind, die die Bindung aufbauen.

Im Fall von Chlorotrinitromethan ist dieser Effekt besonders ausgeprägt und führt zu einem ungewöhnlich kurzen Chlor-Kohlenstoff-Abstand, er könnte aber für vielfältige weitere Fälle von Bedeutung sein - insbesondere in Bereichen, wo Moleküle sich selbständig gegenseitig erkennen und zu größeren Strukturen zusammenfügen. Diese Mechanismen spielen zum Beispiel in biologischen Systemen und in der Nanotechnologie eine wichtige Rolle. (ca/suwe)

Publikation:
"Chlorotrinitromethane and its exceptionally short carbon-chlorine bond";
Michael Göbel, Boris H. Tchitchanov, Jane S. Murray, Peter Politzer und Thomas M. Klapötke;
Nature Chemistry online,
03. Mai 2009;
DOI: 10.1038/nchem.179
Ansprechpartner:
Thomas M. Klapötke
Department Chemie und Biochemie
Sektion Anorganische Molekülchemie (Inorganic Molecule Chemistry)
Tel.: +49-(0)89 / 2180 77504
Fax: +49-(0)89 / 2180 77492
E-mail: tmk@cup.uni-muenchen.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.chemie.uni-muenchen.de/ac/klapoetke/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Evolutionsvorteil der Strandschnecke
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Mobile Goldfinger
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Von Agenten, Algorithmen und unbeliebten Wochentagen

28.03.2017 | Unternehmensmeldung

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit