Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Team solves birth and migration mysteries of cortex's powerful inhibitors, 'chandelier' cells

23.11.2012
They show how embryonic origin and timing influence cell specification and network integration

The cerebral cortex of the human brain has been called "the crowning achievement of evolution." Ironically, it is so complex that even our greatest minds and most sophisticated science are only now beginning to understand how it organizes itself in early development, and how its many cell types function together as circuits.

A major step toward this great goal in neuroscience has been taken by a team led by Professor Z. Josh Huang, Ph.D., at Cold Spring Harbor Laboratory (CSHL). Today they publish research for the first time revealing the birth timing and embryonic origin of a critical class of inhibitory brain cells called chandelier cells, and tracing the specific paths they take during early development into the cerebral cortex of the mouse brain.

These temporal and spatial sequences are regarded by Huang as genetically programmed aspects of brain development, accounting for aspects of the brain that are likely identical in every member of a given species including humans. Exceptions to these stereotypical patterns include irregularities caused by gene mutations or protein malfunctions, both of which are now being identified in people with developmental disorders and neuropsychiatric illnesses.

Chandelier cells were first noticed only 40 years ago, and in the intervening years frustratingly little has been learned about them, beyond the fact that they "hang" individually among great crowds of excitatory cells in the cortex called pyramidal neurons, and that their relatively short branches make contact with these excitatory cells. Indeed, a single chandelier cell connects, or "synapses," with as many as 500 pyramidal neurons. Noting this, the great biologist Francis Crick decades ago speculated that chandelier cells exerted some kind of "veto" power over the messages being exchanged by the much more numerous excitatory cells in their vicinity.

Born in a previously undiscovered 'country'

After three years of painstaking work that has involved using new technologies to identify and trace neural cell progenitors in ways not previously possible, and to track them as they migrate to positions in the maturing cortex, Huang and colleagues, including Dr. Hiroki Taniguchi now at the Max Planck Florida Institute, have demonstrated that chandelier cells are born in a previously unrecognized portion of the embryonic brain, which they have named the VGZ (ventral germinal zone).

Huang, who has been on a decade-long quest to develop means of learning much more about the cortex's inhibitory cells (sometimes called "interneurons"), points out that while they are far less numerous than the excitatory pyramidal cells all around them, cells including chandelier cells that inhibit or modulate excitatory-cell messages play an indispensable role in balancing message flow and ultimately in determining the functional organization of excitatory neurons into meaningful groups.

This is all the more intriguing in the case of chandelier cells, Huang explains, because of their distinctive anatomy: one cell that can regulate the messages of 500 others in its vicinity is one that we need to know about if we want to understand how brain circuits work. Unlike other inhibitory cells, chandelier cells are known to connect with excitatory cells at one particular anatomical location, of great significance: a place called the axon initial segment (AIS) – the spot where a "broadcasting" pyramidal cell generates its transmittable message. To be able to interdict 500 "broadcasters" at this point renders a single chandelier cell a very important player in message propagation and coordination within its locality.

Because of the strategic importance of such cells throughout the cortex, it has been a source of frustration to neuroscientists that they (and other inhibitory cells) have been difficult to classify. Huang has pursued a strategy of following them from their places of birth in the emerging cortex.

Many inhibitory cells come from a large incubator area called the MGE (medial ganglionic eminence); until now, it was not known that most chandelier cells are not born there, and indeed do not emerge until after the MGE has disappeared. Only at this point does the much smaller VGZ form, providing a place where neural precursor cells specifically give rise to chandelier cells.

The team learned that manufacture of a protein encoded by a gene called Nkx2.1 is among the signals marking the birth of a chandelier cell. The gene's action, they found, is also necessary to make the cells. Nkx2.1is a transcription factor, whose expression has previously been linked to the birth of other inhibitory neuronal types. Huang's team observes that it is the timing of Nkx2.1's expression in certain precursors -- following disappearance of the MGE and appearance of the VGZ -- that enabled them to track the birth, specifically, of chandelier cells.

Highly specific migration route and cortical destinations

"In addition to being surprised to discover that chandelier cells are born 'late'—after other inhibitory cells – in a part of the cortex we didn't know about," says Huang, "our second surprise is that once born, these cells take a very stereotyped route into the cortex and assume very specific positions, in three cortical layers." (Layers 2, 5 and 6). "This leads us to postulate that other specific cortical cell types also have specific migration routes in development."

As Huang points out, his team's new discoveries about chandelier cells have implications for disease research, since it is known that the number and connective density of chandelier cells is diminished in schizophrenia. Associations of the same type have recently been made in epilepsy.

"To know the identity of a cell type in the cortex is in effect to know the intrinsic program that distinguishes it from other cell types. In the broadest terms, we are learning about those aspects of the brain development that make us human. 'Nurture,' or experience, also has a very important role in brain development. Our work helps clarify the 'nature' part of the nature/nurture mystery that has always fascinated us," Huang says.

"The spatial and temporal origin of chandelier cells in mouse cortex" appears online ahead of print November 22, 2012 in Science Express. Publication in Science is scheduled for December 14, 2012. The authors are: Hiroki Taniguchi, Jiangteng Lu and Z. Josh Huang. The paper will be available on the Science Express website at 2 pm EST Nov. 22, 2012. http://www.sciencemag.org/content/early/recent

This research was supported by National Institutes of Health grant R01 MH094705. Other support came from the Japan Science and Technology Agency, NARSAD/The Brian and Behavior Research Foundation; The Patterson Foundation; The Simons Foundation; The Robertson Neuroscience Fund at CSHL.

About Cold Spring Harbor Laboratory

Founded in 1890, Cold Spring Harbor Laboratory (CSHL) has shaped contemporary biomedical research and education with programs in cancer, neuroscience, plant biology and quantitative biology. CSHL is ranked number one in the world by Thomson Reuters for impact of its research in molecular biology and genetics. The Laboratory has been home to eight Nobel Prize winners. Today, CSHL's multidisciplinary scientific community is more than 360 scientists strong and its Meetings & Courses program hosts more than 12,500 scientists from around the world each year to its Long Island campus and its China center. Tens of thousands more benefit from the research, reviews, and ideas published in journals and books distributed internationally by CSHL Press. The Laboratory's education arm also includes a graduate school and programs for undergraduates as well as middle and high school students and teachers. CSHL is a private, not-for-profit institution on the north shore of Long Island.

Peter Tarr | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Life Sciences:

nachricht Gene switch may repair DNA and prevent cancer
12.02.2016 | Institute for Integrated Cell-Material Sciences at Kyoto University

nachricht New method opens crystal clear views of biomolecules
11.02.2016 | Deutsches Elektronen-Synchrotron DESY

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gravitationswellen 100 Jahre nach Einsteins Vorhersage entdeckt

LIGO öffnet mit der Beobachtung kollidierender schwarzer Löcher ein neues Fenster zum Universum / Entscheidende Beiträge von Forschern der Max-Planck-Gesellschaft und der Leibniz Universität Hannover

Zum ersten Mal haben Wissenschaftler Kräuselungen der Raumzeit, sogenannte Gravitationswellen, beobachtet, die – ausgelöst von einem Großereignis im fernen...

Im Focus: Messkampagne POLSTRACC: Starker Ozonabbau über der Arktis möglich

Die arktische Stratosphäre war in diesem Winter bisher außergewöhnlich kalt, damit sind alle Voraussetzungen für das Auftreten eines starken Ozonabbaus in den nächsten Wochen gegeben. Diesen Schluss legen erste Ergebnisse der vom Karlsruher Institut für Technologie (KIT) koordinierten Messkampagne POLSTRACC nahe, die seit Ende 2015 in der Arktis läuft. Eine wesentliche Rolle spielen dabei vertikal ausgedehnte polare Stratosphärenwolken, die zuletzt weite Bereiche der Arktis bedeckten: An ihrer Oberfläche finden chemische Reaktionen statt, welche den Ozonabbau beschleunigen. Diese Wolken haben die Klimaforscher nun ungewöhnlicherweise bis in den untersten Bereich der Stratosphäre beobachtet.

„Weite Bereiche der Arktis waren über einen Zeitraum von mehreren Wochen von polaren Stratosphärenwolken zwischen etwa 14 und 26 Kilometern Höhe bedeckt –...

Im Focus: AIDS-Impfstoffproduktion in Algen

Pflanzen und Mikroorganismen werden vielfältig zur Medikamentenproduktion genutzt. Die Produktion solcher Biopharmazeutika in Pflanzen nennt man auch „Molecular Pharming“. Sie ist ein stetig wachsendes Feld der Pflanzenbiotechnologie. Hauptorganismen sind vor allem Hefe und Nutzpflanzen, wie Mais und Kartoffel – Pflanzen mit einem hohen Pflege- und Platzbedarf. Forscher um Prof. Ralph Bock am Max-Planck-Institut für Molekulare Pflanzenphysiologie in Potsdam wollen mit Hilfe von Algen ein ressourcenschonenderes System für die Herstellung von Medikamenten und Impfstoffen verfügbar machen. Die Praxistauglichkeit untersuchten sie an einem potentiellen AIDS-Impfstoff.

Die Produktion von Arzneimitteln in Pflanzen und Mikroorganismen ist nicht neu. Bereits 1982 gelang es, durch den Einsatz gentechnischer Methoden, Bakterien so...

Im Focus: Einzeller mit Durchblick: Wie Bakterien „sehen“

Ein 300 Jahre altes Rätsel der Biologie ist geknackt. Wie eine internationale Forschergruppe aus Deutschland, Großbritannien und Portugal herausgefunden hat, nutzen Cyanobakterien – weltweit vorkommende mikroskopisch kleine Einzeller – das Funktionsprinzip des Linsenauges, um Licht wahrzunehmen und sich darauf zuzubewegen. Der Schlüssel zu des Rätsels Lösung war eine Idee aus Karlsruhe: Jan Gerrit Korvink, Professor am KIT und Leiter des Instituts für Mikrostrukturtechnik (IMT) am KIT, nutzte Siliziumplatten und UV-Licht, um den Brechungsindex der Einzeller zu messen.

 

Im Focus: Production of an AIDS vaccine in algae

Today, plants and microorganisms are heavily used for the production of medicinal products. The production of biopharmaceuticals in plants, also referred to as “Molecular Pharming”, represents a continuously growing field of plant biotechnology. Preferred host organisms include yeast and crop plants, such as maize and potato – plants with high demands. With the help of a special algal strain, the research team of Prof. Ralph Bock at the Max Planck Institute of Molecular Plant Physiology in Potsdam strives to develop a more efficient and resource-saving system for the production of medicines and vaccines. They tested its practicality by synthesizing a component of a potential AIDS vaccine.

The use of plants and microorganisms to produce pharmaceuticals is nothing new. In 1982, bacteria were genetically modified to produce human insulin, a drug...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

SUMA-Kongress 2016 – Die offene Web-Gesellschaft 4.0

12.02.2016 | Veranstaltungen

Career Center deutscher Hochschulen tagen an der Europa-Universität Viadrina

12.02.2016 | Veranstaltungen

Frauen in der digitalen Arbeitswelt: Gestaltung für die IT-Branche und das Ingenieurswesen

11.02.2016 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Ultraschnelle Kontrolle von Spinströmen durch Laserlicht

12.02.2016 | Physik Astronomie

SCHOTT stellt auf der Photonics West zukunftsweisende Lösungen für die Optik vor

12.02.2016 | Messenachrichten

Große Sauerstoffquellen im Erdinneren

12.02.2016 | Geowissenschaften