Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

New target found for nitric oxide's attack on salmonella bacteria

25.07.2011
Naturally produced by the body, nitric oxide disrupts pathogens' metabolism

A new target for nitric oxide has been revealed in studies of how it inhibits the growth of Salmonella. This bacterium is a common cause of food-poisoning.

"Nitric oxide is naturally produced in the nose and the gut and other tissues in the body to ward off infection," explained the senior author of the paper, Dr. Ferric Fang. He is a University of Washington (UW) professor of laboratory medicine, microbiology and medicine.

Nitric oxide – not to be confused with nitrous oxide, the laughing gas in dentists' offices – is similar to the preservatives in hotdogs, Fang said. Reactive nitrogen species, like nitric oxide, make brown meat an appetizing pink. They also weed out microorganisms that spoil food or cause food poisoning.

Fang's lab has made several important discoveries on ways mammals exploit the biochemical properties of nitric oxide to defend themselves from germs. Nitric oxide, a key actor in the body's innate immune defenses, apprehends a rogue's gallery of disease-causing organisms.

The newest results underscore that nitric oxide's antimicrobial actions are due to its interference with the metabolism, or energy production, of pathogens.

"Nitric oxide imposes substantial metabolic restrictions on bacteria," the researchers noted. Fang explained that its reactions with numerous metabolic targets accounts for the broad-spectrum nature of its success. It keeps many types of disease-causing bacteria at bay. It also prevents an overgrowth of the body's many helpful bacteria.

The latest report on the versatility of nitric oxide in arming hosts against pathogens is published in the July 21 issue of Cell Host & Microbe. Dr. Anthony R. Richardson, who is now at the University of North Carolina at Chapel Hill, led the research while he was a postdoctoral fellow in the Fang lab.

Fang's team looked at the multi-pronged action of nitric oxide on Salmonella enterica serovar Typhimurium. This type of Salmonella can contaminate food and is similar to the bacteria that cause typhoid fever.

Nitric oxide and related chemicals put Salmonella into a difficult situation called nitrosative stress. When exposed to nitric oxide, Salmonella is unable to make two essential amino acids, methionine and lysine.

Without these, Salmonella cannot grow.

"This is bad news for the bacteria, but not for the host," Fang said. "Nitric oxide doesn't damage the host that produces it."

The ability to withstand nitrosative stress makes some forms of bacteria more virulent than milder types that can't handle it.

Richardson and his colleagues found that nitric oxide and its cousins throw a monkey wrench into several points in the Krebs cycle, also known as the tricarboxylic acid cycle. This cycle is the second stage in cellular respiration, when fuel is broken down to release energy for cell growth and division.

The researchers outlined how multiple interruptions in this cycle create a series of biochemical consequences that starve Salmonella of methionine and lysine. Nitric oxide also blocks certain regulatory genes that otherwise would give Salmonella an alternate chemical route out of its distress.

"Collectively, this work demonstrates that nitric oxide imposes substantial metabolic restrictions on bacteria," the authors concluded.

In a commentary on these findings, Dr. Stephen Spiro of the Department of Molecular and Cell Biology at the University of Texas at Dallas wrote that the work "focuses renewed interest in central metabolic pathways as nitric oxide targets."

"More generally," he noted, "this study provides an excellent illustration that a proper understanding of host-pathogen interactions and the development of therapeutic interventions require a detailed knowledge of pathogen metabolism."

Nitric oxide's targeting of the Krebs cycle is not unique to Salmonella. In learning how the body naturally controls the energy supplies and growth of varied disease-causing organisms, Fang said, scientists may be able to develop new broad-spectrum antimicrobials that mimic these effects, drugs that promote the body's own natural defenses against infection, or agents that overcome the ways virulent bacteria compensate when being starved of certain nutrients.

In addition to Richardson and Fang, the UW researchers on the study "Multiple Targets of Nitric Oxide of the Tricarboxylic Acid (TCA) Cycle of Salmonella enterica Serovar Typhimurium" were Elizabeth C. Payne, Noah Younger, Joyce E. Karlinsey, Vinai Thomas, Lynne Becker, William W. Navarre, Margaret E. Castor and Stephen J. Libby.

The research was supported by grants from the National Institutes of Health.

Leila Gray | EurekAlert!
Further information:
http://www.washington.edu

Further reports about: Salmonella amino acid cell death nitric nitric oxide

More articles from Life Sciences:

nachricht Gene switch may repair DNA and prevent cancer
12.02.2016 | Institute for Integrated Cell-Material Sciences at Kyoto University

nachricht New method opens crystal clear views of biomolecules
11.02.2016 | Deutsches Elektronen-Synchrotron DESY

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gravitationswellen 100 Jahre nach Einsteins Vorhersage entdeckt

LIGO öffnet mit der Beobachtung kollidierender schwarzer Löcher ein neues Fenster zum Universum / Entscheidende Beiträge von Forschern der Max-Planck-Gesellschaft und der Leibniz Universität Hannover

Zum ersten Mal haben Wissenschaftler Kräuselungen der Raumzeit, sogenannte Gravitationswellen, beobachtet, die – ausgelöst von einem Großereignis im fernen...

Im Focus: Messkampagne POLSTRACC: Starker Ozonabbau über der Arktis möglich

Die arktische Stratosphäre war in diesem Winter bisher außergewöhnlich kalt, damit sind alle Voraussetzungen für das Auftreten eines starken Ozonabbaus in den nächsten Wochen gegeben. Diesen Schluss legen erste Ergebnisse der vom Karlsruher Institut für Technologie (KIT) koordinierten Messkampagne POLSTRACC nahe, die seit Ende 2015 in der Arktis läuft. Eine wesentliche Rolle spielen dabei vertikal ausgedehnte polare Stratosphärenwolken, die zuletzt weite Bereiche der Arktis bedeckten: An ihrer Oberfläche finden chemische Reaktionen statt, welche den Ozonabbau beschleunigen. Diese Wolken haben die Klimaforscher nun ungewöhnlicherweise bis in den untersten Bereich der Stratosphäre beobachtet.

„Weite Bereiche der Arktis waren über einen Zeitraum von mehreren Wochen von polaren Stratosphärenwolken zwischen etwa 14 und 26 Kilometern Höhe bedeckt –...

Im Focus: AIDS-Impfstoffproduktion in Algen

Pflanzen und Mikroorganismen werden vielfältig zur Medikamentenproduktion genutzt. Die Produktion solcher Biopharmazeutika in Pflanzen nennt man auch „Molecular Pharming“. Sie ist ein stetig wachsendes Feld der Pflanzenbiotechnologie. Hauptorganismen sind vor allem Hefe und Nutzpflanzen, wie Mais und Kartoffel – Pflanzen mit einem hohen Pflege- und Platzbedarf. Forscher um Prof. Ralph Bock am Max-Planck-Institut für Molekulare Pflanzenphysiologie in Potsdam wollen mit Hilfe von Algen ein ressourcenschonenderes System für die Herstellung von Medikamenten und Impfstoffen verfügbar machen. Die Praxistauglichkeit untersuchten sie an einem potentiellen AIDS-Impfstoff.

Die Produktion von Arzneimitteln in Pflanzen und Mikroorganismen ist nicht neu. Bereits 1982 gelang es, durch den Einsatz gentechnischer Methoden, Bakterien so...

Im Focus: Einzeller mit Durchblick: Wie Bakterien „sehen“

Ein 300 Jahre altes Rätsel der Biologie ist geknackt. Wie eine internationale Forschergruppe aus Deutschland, Großbritannien und Portugal herausgefunden hat, nutzen Cyanobakterien – weltweit vorkommende mikroskopisch kleine Einzeller – das Funktionsprinzip des Linsenauges, um Licht wahrzunehmen und sich darauf zuzubewegen. Der Schlüssel zu des Rätsels Lösung war eine Idee aus Karlsruhe: Jan Gerrit Korvink, Professor am KIT und Leiter des Instituts für Mikrostrukturtechnik (IMT) am KIT, nutzte Siliziumplatten und UV-Licht, um den Brechungsindex der Einzeller zu messen.

 

Im Focus: Production of an AIDS vaccine in algae

Today, plants and microorganisms are heavily used for the production of medicinal products. The production of biopharmaceuticals in plants, also referred to as “Molecular Pharming”, represents a continuously growing field of plant biotechnology. Preferred host organisms include yeast and crop plants, such as maize and potato – plants with high demands. With the help of a special algal strain, the research team of Prof. Ralph Bock at the Max Planck Institute of Molecular Plant Physiology in Potsdam strives to develop a more efficient and resource-saving system for the production of medicines and vaccines. They tested its practicality by synthesizing a component of a potential AIDS vaccine.

The use of plants and microorganisms to produce pharmaceuticals is nothing new. In 1982, bacteria were genetically modified to produce human insulin, a drug...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

SUMA-Kongress 2016 – Die offene Web-Gesellschaft 4.0

12.02.2016 | Veranstaltungen

Career Center deutscher Hochschulen tagen an der Europa-Universität Viadrina

12.02.2016 | Veranstaltungen

Frauen in der digitalen Arbeitswelt: Gestaltung für die IT-Branche und das Ingenieurswesen

11.02.2016 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Ultraschnelle Kontrolle von Spinströmen durch Laserlicht

12.02.2016 | Physik Astronomie

SCHOTT stellt auf der Photonics West zukunftsweisende Lösungen für die Optik vor

12.02.2016 | Messenachrichten

Große Sauerstoffquellen im Erdinneren

12.02.2016 | Geowissenschaften