Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

New target found for nitric oxide's attack on salmonella bacteria

25.07.2011
Naturally produced by the body, nitric oxide disrupts pathogens' metabolism

A new target for nitric oxide has been revealed in studies of how it inhibits the growth of Salmonella. This bacterium is a common cause of food-poisoning.

"Nitric oxide is naturally produced in the nose and the gut and other tissues in the body to ward off infection," explained the senior author of the paper, Dr. Ferric Fang. He is a University of Washington (UW) professor of laboratory medicine, microbiology and medicine.

Nitric oxide – not to be confused with nitrous oxide, the laughing gas in dentists' offices – is similar to the preservatives in hotdogs, Fang said. Reactive nitrogen species, like nitric oxide, make brown meat an appetizing pink. They also weed out microorganisms that spoil food or cause food poisoning.

Fang's lab has made several important discoveries on ways mammals exploit the biochemical properties of nitric oxide to defend themselves from germs. Nitric oxide, a key actor in the body's innate immune defenses, apprehends a rogue's gallery of disease-causing organisms.

The newest results underscore that nitric oxide's antimicrobial actions are due to its interference with the metabolism, or energy production, of pathogens.

"Nitric oxide imposes substantial metabolic restrictions on bacteria," the researchers noted. Fang explained that its reactions with numerous metabolic targets accounts for the broad-spectrum nature of its success. It keeps many types of disease-causing bacteria at bay. It also prevents an overgrowth of the body's many helpful bacteria.

The latest report on the versatility of nitric oxide in arming hosts against pathogens is published in the July 21 issue of Cell Host & Microbe. Dr. Anthony R. Richardson, who is now at the University of North Carolina at Chapel Hill, led the research while he was a postdoctoral fellow in the Fang lab.

Fang's team looked at the multi-pronged action of nitric oxide on Salmonella enterica serovar Typhimurium. This type of Salmonella can contaminate food and is similar to the bacteria that cause typhoid fever.

Nitric oxide and related chemicals put Salmonella into a difficult situation called nitrosative stress. When exposed to nitric oxide, Salmonella is unable to make two essential amino acids, methionine and lysine.

Without these, Salmonella cannot grow.

"This is bad news for the bacteria, but not for the host," Fang said. "Nitric oxide doesn't damage the host that produces it."

The ability to withstand nitrosative stress makes some forms of bacteria more virulent than milder types that can't handle it.

Richardson and his colleagues found that nitric oxide and its cousins throw a monkey wrench into several points in the Krebs cycle, also known as the tricarboxylic acid cycle. This cycle is the second stage in cellular respiration, when fuel is broken down to release energy for cell growth and division.

The researchers outlined how multiple interruptions in this cycle create a series of biochemical consequences that starve Salmonella of methionine and lysine. Nitric oxide also blocks certain regulatory genes that otherwise would give Salmonella an alternate chemical route out of its distress.

"Collectively, this work demonstrates that nitric oxide imposes substantial metabolic restrictions on bacteria," the authors concluded.

In a commentary on these findings, Dr. Stephen Spiro of the Department of Molecular and Cell Biology at the University of Texas at Dallas wrote that the work "focuses renewed interest in central metabolic pathways as nitric oxide targets."

"More generally," he noted, "this study provides an excellent illustration that a proper understanding of host-pathogen interactions and the development of therapeutic interventions require a detailed knowledge of pathogen metabolism."

Nitric oxide's targeting of the Krebs cycle is not unique to Salmonella. In learning how the body naturally controls the energy supplies and growth of varied disease-causing organisms, Fang said, scientists may be able to develop new broad-spectrum antimicrobials that mimic these effects, drugs that promote the body's own natural defenses against infection, or agents that overcome the ways virulent bacteria compensate when being starved of certain nutrients.

In addition to Richardson and Fang, the UW researchers on the study "Multiple Targets of Nitric Oxide of the Tricarboxylic Acid (TCA) Cycle of Salmonella enterica Serovar Typhimurium" were Elizabeth C. Payne, Noah Younger, Joyce E. Karlinsey, Vinai Thomas, Lynne Becker, William W. Navarre, Margaret E. Castor and Stephen J. Libby.

The research was supported by grants from the National Institutes of Health.

Leila Gray | EurekAlert!
Further information:
http://www.washington.edu

Further reports about: Salmonella amino acid cell death nitric nitric oxide

More articles from Life Sciences:

nachricht New Model of T Cell Activation
27.05.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Fungi – a promising source of chemical diversity
27.05.2016 | Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie - Hans-Knöll-Institut (HKI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: PTB-Forscher können Ertrag von Solarzellen unter realen Bedingungen bestimmen

An einem neuartigen Messplatz messen die Wissenschaftler Referenzsolarzellen mit bisher unerreichter Genauigkeit

Solarzellen werden im Labor bisher unter einheitlich festgelegten Bedingungen getestet. Da die realen Bedingungen, wie die Temperatur oder der Einfallswinkel...

Im Focus: Tiroler Technologie zur Abwasserreinigung weltweit erfolgreich

Auf biologischem Weg und mit geringem Energieeinsatz wandelt ein an der Universität Innsbruck entwickeltes Verfahren in Kläranlagen anfallende Stickstoffverbindungen in unschädlichen Luftstickstoff um. Diese innovative Technologie wurde nun gemeinsam mit dem US-Wasserdienstleister DC Water weiterentwickelt und vermarktet. Für die Kläranlage von Washington DC wird die bisher größte DEMON®-Anlage errichtet.

Das DEMON®-Verfahren wurde bereits vor elf Jahren entwickelt und von der Universität Innsbruck zum Patent angemeldet. Inzwischen wird die Technologie in rund...

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Optische Uhren können die Sekunde machen

Eine Neudefinition der Einheit Sekunde auf der Basis von optischen Uhren wird realistisch

Genauer sind sie jetzt schon, aber noch nicht so zuverlässig. Daher haben optische Uhren, die schon einige Jahre lang als die Uhren der Zukunft gelten, die...

Im Focus: Computational High-Throughput-Screening findet neue Hartmagnete die weniger Seltene Erden enthalten

Für Zukunftstechnologien wie Elektromobilität und erneuerbare Energien ist der Einsatz von starken Dauermagneten von großer Bedeutung. Für deren Herstellung werden Seltene Erden benötigt. Dem Fraunhofer-Institut für Werkstoffmechanik IWM in Freiburg ist es nun gelungen, mit einem selbst entwickelten Simulationsverfahren auf Basis eines High-Throughput-Screening (HTS) vielversprechende Materialansätze für neue Dauermagnete zu identifizieren. Das Team verbesserte damit die magnetischen Eigenschaften und ersetzte gleichzeitig Seltene Erden durch Elemente, die weniger teuer und zuverlässig verfügbar sind. Die Ergebnisse wurden im Online-Fachmagazin »Scientific Reports« publiziert.

Ausgangspunkt des Projekts der IWM-Forscher Wolfgang Körner, Georg Krugel und Christian Elsässer war eine Neodym-Eisen-Stickstoff-Verbindung, die auf einem...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie sieht die Schifffahrt der Zukunft aus? - IAME-Jahreskonferenz in Hamburg

27.05.2016 | Veranstaltungen

Technologische Potenziale der Multiparameteranalytik

27.05.2016 | Veranstaltungen

Umweltbeobachtung in nah und fern

27.05.2016 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Atome mit dem gewissen Twist

30.05.2016 | Physik Astronomie

Durchbruch in der zahnmedizinischen Bildgebung

30.05.2016 | Medizintechnik

Umweltfreundlicher Autolack aus Maisstärke soll Kratzer von selbst reparieren

30.05.2016 | Materialwissenschaften