Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Tanz der Mikrotubuli

19.12.2012
Während der Zellteilung fangen Mikrotubuli die Chromosomen durch Drehbewegung ein

Im Laufe der Zellteilung teilt sich jedes Chromosom in zwei identische Hälften, von denen je eine in beide Tochterzelle gelangt. Für diese Aufteilung der Chromosomen sind fadenförmige Proteine verantwortlich, die sogenannten Mikrotubuli.


Während der Zellteilung ordnen sich die Chromosomen - hier blau markiert - in der Mitte der Zelle an. Mit ihnen verbinden sich die Mikrotubuli, die in der Abbildung grün erscheinen. Sie kontrollieren, dass die Chromosomen in zwei Hälften geteilt werden, von denen je eine in jede Tochterzelle gelangt. © MPI für Biochemie / E. Nigg-Martignoni, P. Meraldi


Indem sie die Mikrotubuli in Grün und die Kinetochore in Magenta markierten, konnten die Wisenschaftler um Iva Tolic-Nørrelykke die Dynamik der Zellbestandteile während der Zellteilung unter dem Mikroskop beobachten. Den neuen Erkenntnissen zufolge schlängeln sich die Mikrotubuli um die Kinetochore, bis sie diese zu fassen bekommen und die Chromosomen daran in zwei Hälften aufteilen. © Iva M. Tolic-Nørrelykke / MPI für Zellbiologie und Genetik

Wie die Mikrotubuli den Kontakt mit den Zentren der Chromosomen ausbilden, haben Forscher um Iva Tolic-Nørrelykke vom Max-Planck-Institut für Zellbiologie und Genetik in Dresden jetzt unter dem Mikroskop beobachtet. Ihre Ergebnisse widersprechen dem bisherigen Bild dieses Prozesses: So wachsen die Mikrotubuli keineswegs direkt auf ihr Ziel zu, sondern sie schlängeln sich in einer rein temperaturabhängigen Drehbewegung um die Chromosomenzentren herum, bis sie diese zu fassen bekommen. Ein detailliertes Verständnis der Zellteilung ist unter anderem deswegen wichtig, weil die Wirkung vieler Krebsmedikamente darauf basiert, dass sie diesen Prozess hemmen.

Wenn sich eine tierische oder pflanzliche Zelle teilt, ordnet sie ihre X-förmigen Chromosomen in Reih und Glied in der Mitte der Zelle an. Ausgehend von den beiden Zellpolen verbinden sich die Mikrotubuli mit einem speziellen Proteinkomplex auf den Chromosomen, dem Kinetochor. Nachdem die Chromosomen kopiert und damit verdoppelt wurden, können die Kopien entlang der Mikrotubuli in die beiden Tochterzellen wandern. Wie es die Mikrotubuli allerdings schaffen, die Kinetochore der Chromosomen zu finden, ist im Detail noch nicht bekannt.

Ein internationales Forscherteam, an dem auch Wissenschaftler der Dresdner Max-Planck Institute für Zellbiologie und Genetik sowie der Physik komplexer Systeme beteiligt waren, hat diesen Prozess jetzt am Beispiel der Spalthefe untersucht und dabei sprichwörtlich Bewegendes beobachtet: Die freien Enden der Proteinfäden, so die Erkenntnis der Forscher, schlängeln sich so lange im Kreis um die Chromosomen herum, bis sie die Kinetochore gefunden haben, mit denen sie sich dann verbinden.

Um dies zu untersuchen, kühlten die Wissenschaftler die Zellen der Spalthefe während der entscheidenden Phase der Zellteilung, in der die Mikrotubuli die Chromosomen zu greifen bekommen, auf zwei Grad ab. Bei dieser Temperatur zerfallen die Mikrotubuli in ihre Einzelbausteine. Anschließend erhitzten die Forscher die Zellen wieder auf Raumtemperatur, so dass sich die Proteinfäden erneut ausbildeten und langsam wieder Kontakt zu den Zentren der Chromosomen aufnahmen. Diesen Prozess dokumentierten die Biologen, indem sie die Position der grün markierten Mikrotubuli gegenüber der ebenfalls farbmarkierten Kinetochore alle zwei Sekunden fotografierten. Auf diesen Aufnahmen konnten die Wissenschaftler erkennen, dass sich die Mikrotubuli um die Kinetochore herum drehten.

Diese Erkenntnis widerspricht einem langjährigen Dogma innerhalb der Zellbiologie: So waren die Wissenschaftler bisher davon ausgegangen, dass die Mikrotubuli direkt auf die Kinetochore zuwachsen, um den Kontakt auszubilden. Dass dieses Bild so lange niemand in Frage gestellt hat, erklärt sich Iva Tolic-Nørrelykke, die Leiterin der aktuellen Studie, so: „Auf die Bewegung der Mikrotubuli hat bisher wohl noch keiner so richtig geachtet. Aus diesem Grund ist einfach jeder davon ausgegangen, dass die alte Vorstellung der Realität entspricht. Außerdem handelt es sich dabei nur um sehr geringe Bewegungen, deren Nachweis zeitlich wie räumlich hoch auflösende Mikroskopieverfahren erfordert.“

Tolic-Nørrelykke und ihre Kollegen wiesen darüber hinaus nach, dass diese Bewegung nicht von Motorproteinen gesteuert wird. Sie vermuteten, dass stattdessen die Brown’sche Molekularbewegung hierfür verantwortlich ist und erstellten dazu ein mathematisches Modell. Die Vorhersagen des theoretischen Modells stimmten mit der beobachteten Bewegung der Mikrotubuli überein: So fingen sie die Kinetochore umso schneller ein, je höher die Umgebungstemperatur war.

Die neuen Erkenntnisse könnten für die Entwicklung neuer Therapien gegen Krebserkrankungen bedeutsam sein. „Viele Krebsmedikamente hemmen die Zellteilung und verhindern, dass sich die Mikrotubuli ausbilden. Das Wissen, wie die Mikrotubuli den Kontakt zu den Chromosomen herstellen, kann dann für die Entwicklung neuer Medikamente genutzt werden“, erklärt Iva Tolic-Nørrelykke.

Ansprechpartner

Florian Frisch M.A.,
Max-Planck-Institut für molekulare Zellbiologie und Genetik, Dresden
Telefon: +49 351 210-2840
Fax: +49 351 210-1019
E-Mail: frisch@­mpi-cbg.de
Dr. Iva Tolic-Nørrelykke,
Max-Planck-Institut für molekulare Zellbiologie und Genetik, Dresden
Telefon: +49 351 210-2691
E-Mail: tolic@­mpi-cbg.de
Originalpublikation
Iana Kalinina, Amitabha Nandi, Petrina Delivani, Mariola R. Chacón, Anna H. Klemm, Damien Ramunno-Johnson, Alexander Krull, Benjamin Lindner, Nenad Pavin und Iva M. Tolic-Nørrelykke
Pivoting of microtubules around the spindle pole accelerates kinetochore capture
Nature Cell Biology, 2012, doi:10.1038/ncb2640

Florian Frisch | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/6704614/Tanz_der_Mikrotubuli

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Buche in die Gene schauen - Vollständiges Genom der Rotbuche entschlüsselt
11.12.2017 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht Mit den Augen der Biene: Zoologe der Uni Graz entwickelt Verfahren zur Verbesserung dunkler Bilder
11.12.2017 | Karl-Franzens-Universität Graz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Im Focus: Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten

Mit neuartigen Experimenten enträtseln Forscher des Helmholtz-Zentrums Geesthacht und der Technischen Universität Hamburg, warum winzige Metallstrukturen extrem fest sind

Ultraleichte und zugleich extrem feste Werkstoffe – poröse Nanomaterialien aus Metall versprechen hochinteressante Anwendungen unter anderem für künftige...

Im Focus: Geburtshelfer und Wegweiser für Photonen

Gezielt Photonen erzeugen und ihren Weg kontrollieren: Das sollte mit einem neuen Design gelingen, das Würzburger Physiker für optische Antennen erarbeitet haben.

Atome und Moleküle können dazu gebracht werden, Lichtteilchen (Photonen) auszusenden. Dieser Vorgang verläuft aber ohne äußeren Eingriff ineffizient und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Goldmedaille für die praktischen Ergebnisse der Forschungsarbeit bei Nutricard

11.12.2017 | Unternehmensmeldung

Nachwuchs knackt Nüsse - Azubis der Friedhelm Loh Group für Projekte prämiert

11.12.2017 | Unternehmensmeldung

Mit 3D-Zellkulturen gegen Krebsresistenzen

11.12.2017 | Medizin Gesundheit