Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Tanz der Bakterien

31.05.2013
PTB-Mathematiker berechnen chaotische Bewegungen in sogenannten „aktiven Fluiden“

Es sieht aus wie eine ganz gewöhnliche Flüssigkeit und benimmt sich doch oftmals ungewöhnlich: ein aktives Fluid,bestehend aus einer großen Menge Bakterien und Wasser. Eine solche „Bakterienflüssigkeit“ strömt unter Bedingungen, bei denen man laminare Strömungen erwarten sollte, chaotisch und mit Wirbeln durchsetzt.


Darstellung von Geschwindigkeitsbahnen in der 3D-Simulation. Der rote Pfeil zeigt kollektives Schwimmen, bei dem viele Bakterien sich gleichzeitig sehr schnell bewegen. Dies ist eine Eigenschaft, die sich bei „normalen“ Flüssigkeiten nicht beobachten lässt.
(Abb.: PTB)


Darstellung der Isoenergieflächen innerhalb der Simulationsbox in der turbulenten Phase.
(Abb.: PTB)

Forscher der Physikalisch-Technischen Bundesanstalt (PTB) und der Universität Cambridge in England haben jetzt gemeinsam ein theoretisches Modell entwickelt, mit dem sich solche Bewegungen berechnen lassen. Ihre Ergebnisse sind in der aktuellen Ausgabe der Fachzeitschrift Physical Review Letters veröffentlicht.

Bakterien sind überall auf der Erde von immenser Bedeutung: Sie halten die Bodenstruktur aufrecht, kontrollieren die Biochemie und Photosynthese in den Ozeanen oder reinigen verseuchte Böden – um nur einige Beispiele zu nennen. Und doch ist über manche Eigenschaften dieser Organismen, die zu den ältesten und artenreichsten Lebensformen der Erde gehören, erstaunlich wenig bekannt. Dazu gehört auch ihr Fließverhalten. Um effizienter vorwärtszukommen, tun sich Bakterien nämlich gerne zusammen und machen sich gemeinsam auf die Reise. In hochorganisierten, kollektiven Schwarmbewegungen können sie große Entfernungen zurücklegen.

Dieses Verhalten bietet große Vorteile gegenüber dem Leben als einzelnes Individuum: Eine ganze Kolonie von Bakterien hat es leichter, in schwierigen Umgebungen zu überleben, Nahrung zu suchen oder neues Terrain zu erobern. Wenn sich eine solche Bakterienkolonie fortbewegt, dann ähnelt sie von außen betrachtet einer Flüssigkeit, weshalb man das Ganze auch „aktives Fluid“ nennt. Doch untersucht man das Fließverhalten genauer, dann offenbaren sich erstaunliche Unterschiede: Dort, wo eine echte Flüssigkeit laminar, also störungsfrei fließt, zeigen sich in der bakteriellen „Flüssigkeit“ chaotische Strömungen und Wirbel.

Es herrscht also letztlich eine ganz andere Fließdynamik. Das liegt daran, dass die Bewegung anders in Gang gebracht wird: Bei einer normalen Flüssigkeit sind es Einflüsse von außen, bei Bakterien dagegen stammt der Antrieb aus dem tiefen Inneren der Bakterienflüssigkeit, nämlich von den vielen Millionen Flagellen oder Geißeln. Das sind fadenförmige Gebilde auf der Bakterien-Oberfläche, die ihrer Fortbewegung dienen.

Dass sich Mathematiker der PTB mit Flüssigkeiten beschäftigen, hat einen triftigen Grund: Ihre Simulationsrechnungen könnten gleich für mehrere Industriezweige wichtig sein. So hat die Beschreibung normaler Flüssigkeiten durch die Navier-Stokes-Gleichung für die industrielle Anwendung eine enorme Bedeutung, wie an der Verwendung von Simulationen zur Fluid-Struktur-Wechselwirkung oder im Zusammenhang mit Durchflussmessungen sichtbar wird. Das Verständnis und die Simulation der neuartigen Klasse von aktiven Flüssigkeiten stellen einen wichtigen ersten Schritt zu einer Vielzahl von zukünftigen Anwendungen dar. Beispielsweise könnten einer Flüssigkeit Mikroschwimmer zugefügt und so deren Fließeigenschaften gezielt manipuliert, effektiv durchmischt oder Medikamente im Körper transportiert werden. Obwohl das kollektive Verhalten von Mikroschwimmern Gegenstand der aktuellen Forschung ist, weiß man noch zu wenig über die Eigenschaften aktiver Fluide. Insbesondere sind die entwickelten Modelle sehr kompliziert und benötigen viele Parameter, was den quantitativen Vergleich mit Experimenten unmöglich macht.

PTB-Wissenschaftler und Wissenschaftler der University of Cambridge haben zusammen eine einfache Erweiterung der Navier-Stokes-Gleichung für aktive Flüssigkeiten vorgeschlagen, die auch ohne äußere Einflüsse instabil wird. In der Veröffentlichung werden dreidimensionale Simulationen (PTB) des Models mit Experimenten von dichten Bacillus-Subtilis-Suspensionen (Cambridge, Princeton) quantitativ verglichen. Erstmals konnten ein Modell mit experimentellen Daten verglichen und Modellparameter bestimmt werden. So lassen sich schwer zugängliche physikalische Größen wie z. B. die Elastizität oder anisotrope Viskosität der aktiven Flüssigkeit indirekt messen.

Die Ergebnisse der internationalen Forschergruppe werden sicherlich interessante neue Untersuchungen nach sich ziehen, um die Entstehung von kollektivem Verhalten noch eingehender kennenzulernen, und möglicherweise künftige praktische Anwendungen anstoßen.
es/ptb)

Ansprechpartner:
Dr. Sebastian Heidenreich, PTB-Arbeitsgruppe 8.41 Modellierung und Simulation, Telefon: (030) 3481-7726, E-Mail: sebastian.heidenreich@ptb.de

Wissenschaftliche Originalveröffentlichung:
J. Dunkel (Cambridge), S. Heidenreich (PTB), K. Drescher (Princeton), H. H. Wensink (Paris), M. Bär (PTB), R. E. Goldstein (Cambridge): Fluid Dynamics of Bacterial Turbulence. Physical Review Letters 110, 228102 (2013, http://prl.aps.org/abstract/PRL/v110/i22/e228102

Erika Schow | PTB
Weitere Informationen:
http://www.ptb.de/de/aktuelles/archiv/presseinfos/pi2013/pitext/pi130531.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscher sehen Biomolekülen bei der Arbeit zu
05.12.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Wie sich Zellen gegen Salmonellen verteidigen
05.12.2016 | Goethe-Universität Frankfurt am Main

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Flüssiger Wasserstoff im freien Fall

05.12.2016 | Maschinenbau

Forscher sehen Biomolekülen bei der Arbeit zu

05.12.2016 | Biowissenschaften Chemie

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungsnachrichten