Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Taktgeber für Hirnwellen

19.11.2014

Hemmende Nervenzellen und elektrische Synapsen bestimmen die Frequenz von rhythmischer Aktivität im Gehirn

Schwingungen der Hirnaktivität beeinflussen unsere Aufmerksamkeit und viele weitere geistige Fähigkeiten. Tatjana Tchumatchenko vom Max-Planck-Institut für Hirnforschung in Frankfurt und Claudia Clopath vom Imperial College London haben jetzt ein theoretisches Modell entwickelt, welches den Ursprung dieser Schwingungen in neuronalen Netzwerken erklärt.


Netzwerk aus Nervenzellen in der Hirnrinde (Federn: elektrische Synapsen, Linien: chemische Synapsen). Die elektrischen Synapsen sind wichtig für rhythmische Netzwerk-weite Aktivitätsschwankungen.

© MPI f. Hirnforschung/ T. Tchumatchenko

Hemmende Neuronen und elektrische Synapsen spielen dabei die Schlüsselrollen und könnten daher Zielscheibe für neue Medikamente werden.

Alpha- und Gamma-Gehirnwellen werden durch EEG-Messungen sichtbar gemacht und können dem diagnostizierenden Arzt Aufschluss über den geistigen Zustand des Patienten geben. Der mysteriöse Begriff Hirnwellen steht dabei für nichts weiter als synchrone Schwingungen der Aktivität vieler Neuronen, welche sich oft über große Teile des Gehirns ausbreiten.

Die griechischen Buchstaben bezeichnen dabei die Oszillationsfrequenz. Diese reicht von einem Hertz, bei den Alpha-Wellen, bis zu mehreren hundert Hertz, im Theta-Bereich. Die Wellen sind dabei ein Taktgeber für das menschliche Gehirn und kontrollieren Aufmerksamkeit, Wahrnehmung und Erinnerungsformation.

Die Ergebnisse vieler experimenteller Untersuchungen zeigen, dass bestimmte Klassen von Neuronen größeren Einfluss auf den Oszillationszustand des Netzwerkes nehmen als Andere. Hemmende Neuronen, welche etwa 20 Prozent der Nervenzellen in der Hirnrinde ausmachen, scheinen die Schlüsselrolle in der Entstehung von Gehirnwellen zu spielen.

Wie die hemmenden Neuronen die Oszillation steuern ist allerdings nicht bekannt. Da Gehirnwellen ein Netzwerkphänomen sind, ist außerdem nicht klar, wie sich die Eigenschaften der einzelnen Zellen in der Netzwerkdynamik widerspiegeln, oder ob eventuell nur die synaptischen Verbindungen von Bedeutung sind.

Tatjana Tchumatchenko vom Max-Planck-Institut für Hirnforschung in Frankfurt und Claudia Clopath vom Imperial College London sind der Überzeugung, dass sie mit Hilfe der Mathematik ein Phänomen wie die Gehirnwellen besser verstehen können. In ihrer gemeinsamen Arbeit entwickelten sie ein mathematisches Modell, welches die Aktivität der erregenden und hemmenden Nervenzellen eines Netzwerks wie der menschlichen Hirnrinde bestimmen kann.

„Es ist uns nicht nur gelungen, Ergebnisse aus bisherigen Experimenten zuverlässig analytisch sowie numerisch zu reproduzieren, das mathematische Modell enthüllte sogar die zwei notwendigen Bedingungen für die Entstehung von Gehirnwellen“, erklärt Tatjana Tchumatchenko.

„Erstens müssen die einzelnen hemmenden Neuronen eine unterschwellige Resonanz des Membranpotenzials bei der gewünschten Netzwerkoszillationsfrequenz aufweisen- das heißt sie müssten im Takt schwingen ohne, dass ihre elektrische Impulse diese Schwingung notwendigerweise offenbaren.“ Aber auch die Art der synaptischen Konnektivität ist essenziell denn Oszillationen treten nur dann auf, wenn die hemmenden Neuronen durch elektrische Synapsen ausreichender Verbindungstärke vernetzt sind.

In der Hirnrinde waren elektrischen Synapsen bislang kaum bekannt, in den letzten Jahren haben Forscher diese jedoch in mehr und mehr Gehirnarealen gefunden. Es sind allerdings nur hemmende Neuronen elektrisch gekoppelt, zwischen erregenden Nervenzellen wurde diese Art der Signalübertragung bisher noch nicht beobachtet.

Die hemmenden Neuronen und deren synaptische Verbindungen besitzen den Wissenschaftlern zufolge also eine zentrale Rolle: „Erstaunlicherweise zeigt unser Modell, dass allein die Eigenschaften der hemmenden Neuronen und deren Verbindungen die Oszillationsfrequenz des gesamten Netzwerks bestimmen. Und das, obwohl die Mehrheit der Nervenzellen erregend sind“, sagt Claudia Clopath. Sie fügt hinzu: „Natürlich haben die Eigenschaften der erregenden Neuronen Einfluss auf die Dynamik des Netzwerks, allerdings bestimmen diese bei den Gehirnwellen nur die Amplitude nicht aber die Frequenz der Schwingung“.

Die gewonnen Erkenntnisse werden das Verständnis komplexer Systeme vertiefen und dabei helfen, den Zusammenhang zwischen einzelnen Netzwerkeinheiten und der entstehenden Netzwerkdynamik zu erklären. Des Weiteren können die Forschungsergebnisse dazu beitragen, zielgenauere Wirkstoffe zu entwickeln, welche die Erfolgschancen psychiatrischer Behandlungen verbessern.


Ansprechpartner 

Amadeus Dettner
Max-Planck-Institut für Hirnforschung, Frankfurt am Main

E-Mail: amadeus.dettner@brain.mpg.de


Dr. Tatjana Tchumatchenko

Nachwuchsgruppenleiterin
Max-Planck-Institut für Hirnforschung, Frankfurt am Main

Telefon: +49 69 850033-1450

E-Mail: tatjana.tchumatchenko@brain.mpg.de


Originalpublikation
Tatjana Tchumatchenko und Claudia Clopath

Oscillations emerging from noise-driven steady state in networks with electrical synapses and subthreshold resonance

Nature Communications, 18 November 2014

Amadeus Dettner | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/8763219/oszillationen-im-gehirn

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neuer Mechanismus der Gen-Inaktivierung könnte vor Altern und Krebs schützen
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

nachricht Alge im Eismeer - Genom einer antarktischen Meeresalge entschlüsselt
23.02.2017 | Universität Konstanz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Im Focus: Innovative Antikörper für die Tumortherapie

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig von diesen teuren Medikamenten profitieren, wird intensiv an deren Verbesserung gearbeitet. Forschern um Prof. Thomas Valerius an der Christian Albrechts Universität Kiel gelang es nun, innovative Antikörper mit verbesserter Wirkung zu entwickeln.

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2017

23.02.2017 | Veranstaltungen

Wie werden wir gesund alt? - Alternsforscher tagen auf interdisziplinärem Symposium in Magdeburg

23.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Heinz Maier-Leibnitz-Preise 2017: DFG und BMBF zeichnen vier Forscherinnen und sechs Forscher aus

23.02.2017 | Förderungen Preise

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungsnachrichten

Planeten außerhalb unseres Sonnensystems: Bayreuther Forscher dringen tief ins Weltall vor

23.02.2017 | Physik Astronomie