Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Taktgeber für Hirnwellen

19.11.2014

Hemmende Nervenzellen und elektrische Synapsen bestimmen die Frequenz von rhythmischer Aktivität im Gehirn

Schwingungen der Hirnaktivität beeinflussen unsere Aufmerksamkeit und viele weitere geistige Fähigkeiten. Tatjana Tchumatchenko vom Max-Planck-Institut für Hirnforschung in Frankfurt und Claudia Clopath vom Imperial College London haben jetzt ein theoretisches Modell entwickelt, welches den Ursprung dieser Schwingungen in neuronalen Netzwerken erklärt.


Netzwerk aus Nervenzellen in der Hirnrinde (Federn: elektrische Synapsen, Linien: chemische Synapsen). Die elektrischen Synapsen sind wichtig für rhythmische Netzwerk-weite Aktivitätsschwankungen.

© MPI f. Hirnforschung/ T. Tchumatchenko

Hemmende Neuronen und elektrische Synapsen spielen dabei die Schlüsselrollen und könnten daher Zielscheibe für neue Medikamente werden.

Alpha- und Gamma-Gehirnwellen werden durch EEG-Messungen sichtbar gemacht und können dem diagnostizierenden Arzt Aufschluss über den geistigen Zustand des Patienten geben. Der mysteriöse Begriff Hirnwellen steht dabei für nichts weiter als synchrone Schwingungen der Aktivität vieler Neuronen, welche sich oft über große Teile des Gehirns ausbreiten.

Die griechischen Buchstaben bezeichnen dabei die Oszillationsfrequenz. Diese reicht von einem Hertz, bei den Alpha-Wellen, bis zu mehreren hundert Hertz, im Theta-Bereich. Die Wellen sind dabei ein Taktgeber für das menschliche Gehirn und kontrollieren Aufmerksamkeit, Wahrnehmung und Erinnerungsformation.

Die Ergebnisse vieler experimenteller Untersuchungen zeigen, dass bestimmte Klassen von Neuronen größeren Einfluss auf den Oszillationszustand des Netzwerkes nehmen als Andere. Hemmende Neuronen, welche etwa 20 Prozent der Nervenzellen in der Hirnrinde ausmachen, scheinen die Schlüsselrolle in der Entstehung von Gehirnwellen zu spielen.

Wie die hemmenden Neuronen die Oszillation steuern ist allerdings nicht bekannt. Da Gehirnwellen ein Netzwerkphänomen sind, ist außerdem nicht klar, wie sich die Eigenschaften der einzelnen Zellen in der Netzwerkdynamik widerspiegeln, oder ob eventuell nur die synaptischen Verbindungen von Bedeutung sind.

Tatjana Tchumatchenko vom Max-Planck-Institut für Hirnforschung in Frankfurt und Claudia Clopath vom Imperial College London sind der Überzeugung, dass sie mit Hilfe der Mathematik ein Phänomen wie die Gehirnwellen besser verstehen können. In ihrer gemeinsamen Arbeit entwickelten sie ein mathematisches Modell, welches die Aktivität der erregenden und hemmenden Nervenzellen eines Netzwerks wie der menschlichen Hirnrinde bestimmen kann.

„Es ist uns nicht nur gelungen, Ergebnisse aus bisherigen Experimenten zuverlässig analytisch sowie numerisch zu reproduzieren, das mathematische Modell enthüllte sogar die zwei notwendigen Bedingungen für die Entstehung von Gehirnwellen“, erklärt Tatjana Tchumatchenko.

„Erstens müssen die einzelnen hemmenden Neuronen eine unterschwellige Resonanz des Membranpotenzials bei der gewünschten Netzwerkoszillationsfrequenz aufweisen- das heißt sie müssten im Takt schwingen ohne, dass ihre elektrische Impulse diese Schwingung notwendigerweise offenbaren.“ Aber auch die Art der synaptischen Konnektivität ist essenziell denn Oszillationen treten nur dann auf, wenn die hemmenden Neuronen durch elektrische Synapsen ausreichender Verbindungstärke vernetzt sind.

In der Hirnrinde waren elektrischen Synapsen bislang kaum bekannt, in den letzten Jahren haben Forscher diese jedoch in mehr und mehr Gehirnarealen gefunden. Es sind allerdings nur hemmende Neuronen elektrisch gekoppelt, zwischen erregenden Nervenzellen wurde diese Art der Signalübertragung bisher noch nicht beobachtet.

Die hemmenden Neuronen und deren synaptische Verbindungen besitzen den Wissenschaftlern zufolge also eine zentrale Rolle: „Erstaunlicherweise zeigt unser Modell, dass allein die Eigenschaften der hemmenden Neuronen und deren Verbindungen die Oszillationsfrequenz des gesamten Netzwerks bestimmen. Und das, obwohl die Mehrheit der Nervenzellen erregend sind“, sagt Claudia Clopath. Sie fügt hinzu: „Natürlich haben die Eigenschaften der erregenden Neuronen Einfluss auf die Dynamik des Netzwerks, allerdings bestimmen diese bei den Gehirnwellen nur die Amplitude nicht aber die Frequenz der Schwingung“.

Die gewonnen Erkenntnisse werden das Verständnis komplexer Systeme vertiefen und dabei helfen, den Zusammenhang zwischen einzelnen Netzwerkeinheiten und der entstehenden Netzwerkdynamik zu erklären. Des Weiteren können die Forschungsergebnisse dazu beitragen, zielgenauere Wirkstoffe zu entwickeln, welche die Erfolgschancen psychiatrischer Behandlungen verbessern.


Ansprechpartner 

Amadeus Dettner
Max-Planck-Institut für Hirnforschung, Frankfurt am Main

E-Mail: amadeus.dettner@brain.mpg.de


Dr. Tatjana Tchumatchenko

Nachwuchsgruppenleiterin
Max-Planck-Institut für Hirnforschung, Frankfurt am Main

Telefon: +49 69 850033-1450

E-Mail: tatjana.tchumatchenko@brain.mpg.de


Originalpublikation
Tatjana Tchumatchenko und Claudia Clopath

Oscillations emerging from noise-driven steady state in networks with electrical synapses and subthreshold resonance

Nature Communications, 18 November 2014

Amadeus Dettner | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/8763219/oszillationen-im-gehirn

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften