Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Taktgeber für Hirnwellen

19.11.2014

Hemmende Nervenzellen und elektrische Synapsen bestimmen die Frequenz von rhythmischer Aktivität im Gehirn

Schwingungen der Hirnaktivität beeinflussen unsere Aufmerksamkeit und viele weitere geistige Fähigkeiten. Tatjana Tchumatchenko vom Max-Planck-Institut für Hirnforschung in Frankfurt und Claudia Clopath vom Imperial College London haben jetzt ein theoretisches Modell entwickelt, welches den Ursprung dieser Schwingungen in neuronalen Netzwerken erklärt.


Netzwerk aus Nervenzellen in der Hirnrinde (Federn: elektrische Synapsen, Linien: chemische Synapsen). Die elektrischen Synapsen sind wichtig für rhythmische Netzwerk-weite Aktivitätsschwankungen.

© MPI f. Hirnforschung/ T. Tchumatchenko

Hemmende Neuronen und elektrische Synapsen spielen dabei die Schlüsselrollen und könnten daher Zielscheibe für neue Medikamente werden.

Alpha- und Gamma-Gehirnwellen werden durch EEG-Messungen sichtbar gemacht und können dem diagnostizierenden Arzt Aufschluss über den geistigen Zustand des Patienten geben. Der mysteriöse Begriff Hirnwellen steht dabei für nichts weiter als synchrone Schwingungen der Aktivität vieler Neuronen, welche sich oft über große Teile des Gehirns ausbreiten.

Die griechischen Buchstaben bezeichnen dabei die Oszillationsfrequenz. Diese reicht von einem Hertz, bei den Alpha-Wellen, bis zu mehreren hundert Hertz, im Theta-Bereich. Die Wellen sind dabei ein Taktgeber für das menschliche Gehirn und kontrollieren Aufmerksamkeit, Wahrnehmung und Erinnerungsformation.

Die Ergebnisse vieler experimenteller Untersuchungen zeigen, dass bestimmte Klassen von Neuronen größeren Einfluss auf den Oszillationszustand des Netzwerkes nehmen als Andere. Hemmende Neuronen, welche etwa 20 Prozent der Nervenzellen in der Hirnrinde ausmachen, scheinen die Schlüsselrolle in der Entstehung von Gehirnwellen zu spielen.

Wie die hemmenden Neuronen die Oszillation steuern ist allerdings nicht bekannt. Da Gehirnwellen ein Netzwerkphänomen sind, ist außerdem nicht klar, wie sich die Eigenschaften der einzelnen Zellen in der Netzwerkdynamik widerspiegeln, oder ob eventuell nur die synaptischen Verbindungen von Bedeutung sind.

Tatjana Tchumatchenko vom Max-Planck-Institut für Hirnforschung in Frankfurt und Claudia Clopath vom Imperial College London sind der Überzeugung, dass sie mit Hilfe der Mathematik ein Phänomen wie die Gehirnwellen besser verstehen können. In ihrer gemeinsamen Arbeit entwickelten sie ein mathematisches Modell, welches die Aktivität der erregenden und hemmenden Nervenzellen eines Netzwerks wie der menschlichen Hirnrinde bestimmen kann.

„Es ist uns nicht nur gelungen, Ergebnisse aus bisherigen Experimenten zuverlässig analytisch sowie numerisch zu reproduzieren, das mathematische Modell enthüllte sogar die zwei notwendigen Bedingungen für die Entstehung von Gehirnwellen“, erklärt Tatjana Tchumatchenko.

„Erstens müssen die einzelnen hemmenden Neuronen eine unterschwellige Resonanz des Membranpotenzials bei der gewünschten Netzwerkoszillationsfrequenz aufweisen- das heißt sie müssten im Takt schwingen ohne, dass ihre elektrische Impulse diese Schwingung notwendigerweise offenbaren.“ Aber auch die Art der synaptischen Konnektivität ist essenziell denn Oszillationen treten nur dann auf, wenn die hemmenden Neuronen durch elektrische Synapsen ausreichender Verbindungstärke vernetzt sind.

In der Hirnrinde waren elektrischen Synapsen bislang kaum bekannt, in den letzten Jahren haben Forscher diese jedoch in mehr und mehr Gehirnarealen gefunden. Es sind allerdings nur hemmende Neuronen elektrisch gekoppelt, zwischen erregenden Nervenzellen wurde diese Art der Signalübertragung bisher noch nicht beobachtet.

Die hemmenden Neuronen und deren synaptische Verbindungen besitzen den Wissenschaftlern zufolge also eine zentrale Rolle: „Erstaunlicherweise zeigt unser Modell, dass allein die Eigenschaften der hemmenden Neuronen und deren Verbindungen die Oszillationsfrequenz des gesamten Netzwerks bestimmen. Und das, obwohl die Mehrheit der Nervenzellen erregend sind“, sagt Claudia Clopath. Sie fügt hinzu: „Natürlich haben die Eigenschaften der erregenden Neuronen Einfluss auf die Dynamik des Netzwerks, allerdings bestimmen diese bei den Gehirnwellen nur die Amplitude nicht aber die Frequenz der Schwingung“.

Die gewonnen Erkenntnisse werden das Verständnis komplexer Systeme vertiefen und dabei helfen, den Zusammenhang zwischen einzelnen Netzwerkeinheiten und der entstehenden Netzwerkdynamik zu erklären. Des Weiteren können die Forschungsergebnisse dazu beitragen, zielgenauere Wirkstoffe zu entwickeln, welche die Erfolgschancen psychiatrischer Behandlungen verbessern.


Ansprechpartner 

Amadeus Dettner
Max-Planck-Institut für Hirnforschung, Frankfurt am Main

E-Mail: amadeus.dettner@brain.mpg.de


Dr. Tatjana Tchumatchenko

Nachwuchsgruppenleiterin
Max-Planck-Institut für Hirnforschung, Frankfurt am Main

Telefon: +49 69 850033-1450

E-Mail: tatjana.tchumatchenko@brain.mpg.de


Originalpublikation
Tatjana Tchumatchenko und Claudia Clopath

Oscillations emerging from noise-driven steady state in networks with electrical synapses and subthreshold resonance

Nature Communications, 18 November 2014

Amadeus Dettner | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/8763219/oszillationen-im-gehirn

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Sollbruchstellen im Rückgrat - Bioabbaubare Polymere durch chemische Gasphasenabscheidung
02.12.2016 | Gesellschaft Deutscher Chemiker e.V.

nachricht "Fingerabdruck" diffuser Protonen entschlüsselt
02.12.2016 | Universität Leipzig

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie