Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Taktgeber für Hirnwellen

19.11.2014

Hemmende Nervenzellen und elektrische Synapsen bestimmen die Frequenz von rhythmischer Aktivität im Gehirn

Schwingungen der Hirnaktivität beeinflussen unsere Aufmerksamkeit und viele weitere geistige Fähigkeiten. Tatjana Tchumatchenko vom Max-Planck-Institut für Hirnforschung in Frankfurt und Claudia Clopath vom Imperial College London haben jetzt ein theoretisches Modell entwickelt, welches den Ursprung dieser Schwingungen in neuronalen Netzwerken erklärt.


Netzwerk aus Nervenzellen in der Hirnrinde (Federn: elektrische Synapsen, Linien: chemische Synapsen). Die elektrischen Synapsen sind wichtig für rhythmische Netzwerk-weite Aktivitätsschwankungen.

© MPI f. Hirnforschung/ T. Tchumatchenko

Hemmende Neuronen und elektrische Synapsen spielen dabei die Schlüsselrollen und könnten daher Zielscheibe für neue Medikamente werden.

Alpha- und Gamma-Gehirnwellen werden durch EEG-Messungen sichtbar gemacht und können dem diagnostizierenden Arzt Aufschluss über den geistigen Zustand des Patienten geben. Der mysteriöse Begriff Hirnwellen steht dabei für nichts weiter als synchrone Schwingungen der Aktivität vieler Neuronen, welche sich oft über große Teile des Gehirns ausbreiten.

Die griechischen Buchstaben bezeichnen dabei die Oszillationsfrequenz. Diese reicht von einem Hertz, bei den Alpha-Wellen, bis zu mehreren hundert Hertz, im Theta-Bereich. Die Wellen sind dabei ein Taktgeber für das menschliche Gehirn und kontrollieren Aufmerksamkeit, Wahrnehmung und Erinnerungsformation.

Die Ergebnisse vieler experimenteller Untersuchungen zeigen, dass bestimmte Klassen von Neuronen größeren Einfluss auf den Oszillationszustand des Netzwerkes nehmen als Andere. Hemmende Neuronen, welche etwa 20 Prozent der Nervenzellen in der Hirnrinde ausmachen, scheinen die Schlüsselrolle in der Entstehung von Gehirnwellen zu spielen.

Wie die hemmenden Neuronen die Oszillation steuern ist allerdings nicht bekannt. Da Gehirnwellen ein Netzwerkphänomen sind, ist außerdem nicht klar, wie sich die Eigenschaften der einzelnen Zellen in der Netzwerkdynamik widerspiegeln, oder ob eventuell nur die synaptischen Verbindungen von Bedeutung sind.

Tatjana Tchumatchenko vom Max-Planck-Institut für Hirnforschung in Frankfurt und Claudia Clopath vom Imperial College London sind der Überzeugung, dass sie mit Hilfe der Mathematik ein Phänomen wie die Gehirnwellen besser verstehen können. In ihrer gemeinsamen Arbeit entwickelten sie ein mathematisches Modell, welches die Aktivität der erregenden und hemmenden Nervenzellen eines Netzwerks wie der menschlichen Hirnrinde bestimmen kann.

„Es ist uns nicht nur gelungen, Ergebnisse aus bisherigen Experimenten zuverlässig analytisch sowie numerisch zu reproduzieren, das mathematische Modell enthüllte sogar die zwei notwendigen Bedingungen für die Entstehung von Gehirnwellen“, erklärt Tatjana Tchumatchenko.

„Erstens müssen die einzelnen hemmenden Neuronen eine unterschwellige Resonanz des Membranpotenzials bei der gewünschten Netzwerkoszillationsfrequenz aufweisen- das heißt sie müssten im Takt schwingen ohne, dass ihre elektrische Impulse diese Schwingung notwendigerweise offenbaren.“ Aber auch die Art der synaptischen Konnektivität ist essenziell denn Oszillationen treten nur dann auf, wenn die hemmenden Neuronen durch elektrische Synapsen ausreichender Verbindungstärke vernetzt sind.

In der Hirnrinde waren elektrischen Synapsen bislang kaum bekannt, in den letzten Jahren haben Forscher diese jedoch in mehr und mehr Gehirnarealen gefunden. Es sind allerdings nur hemmende Neuronen elektrisch gekoppelt, zwischen erregenden Nervenzellen wurde diese Art der Signalübertragung bisher noch nicht beobachtet.

Die hemmenden Neuronen und deren synaptische Verbindungen besitzen den Wissenschaftlern zufolge also eine zentrale Rolle: „Erstaunlicherweise zeigt unser Modell, dass allein die Eigenschaften der hemmenden Neuronen und deren Verbindungen die Oszillationsfrequenz des gesamten Netzwerks bestimmen. Und das, obwohl die Mehrheit der Nervenzellen erregend sind“, sagt Claudia Clopath. Sie fügt hinzu: „Natürlich haben die Eigenschaften der erregenden Neuronen Einfluss auf die Dynamik des Netzwerks, allerdings bestimmen diese bei den Gehirnwellen nur die Amplitude nicht aber die Frequenz der Schwingung“.

Die gewonnen Erkenntnisse werden das Verständnis komplexer Systeme vertiefen und dabei helfen, den Zusammenhang zwischen einzelnen Netzwerkeinheiten und der entstehenden Netzwerkdynamik zu erklären. Des Weiteren können die Forschungsergebnisse dazu beitragen, zielgenauere Wirkstoffe zu entwickeln, welche die Erfolgschancen psychiatrischer Behandlungen verbessern.


Ansprechpartner 

Amadeus Dettner
Max-Planck-Institut für Hirnforschung, Frankfurt am Main

E-Mail: amadeus.dettner@brain.mpg.de


Dr. Tatjana Tchumatchenko

Nachwuchsgruppenleiterin
Max-Planck-Institut für Hirnforschung, Frankfurt am Main

Telefon: +49 69 850033-1450

E-Mail: tatjana.tchumatchenko@brain.mpg.de


Originalpublikation
Tatjana Tchumatchenko und Claudia Clopath

Oscillations emerging from noise-driven steady state in networks with electrical synapses and subthreshold resonance

Nature Communications, 18 November 2014

Amadeus Dettner | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/8763219/oszillationen-im-gehirn

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Akute Myeloische Leukämie: Ulmer erforschen bisher unbekannten Mechanismus der Blutkrebsentstehung
26.04.2017 | Universität Ulm

nachricht Zusammenhang zwischen Immunsystem, Hirnstruktur und Gedächtnis entdeckt
26.04.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Ballungsräume Europas

26.04.2017 | Veranstaltungen

200 Weltneuheiten beim Innovationstag Mittelstand in Berlin

26.04.2017 | Veranstaltungen

123. Internistenkongress: Wie digitale Technik die Patientenversorgung verändert

26.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Akute Myeloische Leukämie: Ulmer erforschen bisher unbekannten Mechanismus der Blutkrebsentstehung

26.04.2017 | Biowissenschaften Chemie

Naturkatastrophen kosten Winzer jährlich Milliarden

26.04.2017 | Interdisziplinäre Forschung

Zusammenhang zwischen Immunsystem, Hirnstruktur und Gedächtnis entdeckt

26.04.2017 | Biowissenschaften Chemie