Systembiologische Samenforschung

Was passiert mit Pflanzensamen während der Keimung? Das untersuchen Forscher um den Pflanzenphysiologen PD Dr. Gerhard Leubner vom Institut für Biologie II, der das Teilprojekt der Universität Freiburg koordiniert, und der Hauptantragsteller Prof. Dr. Mike Holdsworth (Universität Nottingham) zukünftig gemeinsam mit der Freiburger Biomechanik-Gruppe von Prof. Dr. Thomas Speck und fünf weiteren internationalen Forschungsgruppen.

Im europäischen Wettbewerb „European Research Era-Net Plant Genomics“ belegte das Konsortium „virtual Seed“ (vSEED) der Universitäten Freiburg, Nottingham, Leeds (beide Großbritannien) und Wageningen (Niederlande) den ersten Platz von 54 Bewerbern. Sie erhalten für die nächsten drei Jahre eine Förderung von 1.7 Millionen Euro für insgesamt acht Labore und mehrere Postdoc-Stellen. Das Netzwerk will Mithilfe von modernen Methoden der Systembiologie molekulare, physiologische und mechanische Vorgänge in Pflanzensamen in ihrer Gesamtheit erfassen und diese verschiedenen Ebenen durch mathematische Modellierung zusammenbringen.

Samen dienen der Pflanze zum einen zur Ausbreitung in neue Lebensräume, zum anderen stellen sie das am besten gewappnete Stadium gegen Trockenheit dar. Jahre kann der schlafähnliche Zustand der sogenannten Dormanz andauern, bis die Umweltbedingungen für die Keimung optimal sind. Nicht nur für Grundlagenforscher, auch für die Landwirtschafts- und Ernährungsindustrie ist das Verständnis der Samenbiologie von Bedeutung.

Wie kommt es, dass ein scheinbar lebloses Gebilde plötzlich eine Keimwurzel austreibt, aus der eine ganze Pflanze entsteht? Ein komplexes Netzwerk aus Molekülen dirigiert diese Prozesse und reagiert auf Umwelteinflüsse. Es verändert die mechanischen Eigenschaften der Hüllgewebe und erlaubt dem Pflänzchen, im richtigen Moment durchzubrechen. „Biologen und Mathematiker müssen zusammenarbeiten, um mittels systembiologischer Modellierung eine integrative Gesamtschau der verschiedenen Ebenen herzustellen. Und genau das ist das Ziel des interdisziplinären Projekts virtual Seed.“ sagt Dr. Gerhard Leubner, Leiter der Arbeitsgruppe für Pflanzenphysiologie.

Für die nächsten drei Jahre stellt sich das Konsortium aus vier europäischen Partnern die Aufgabe, eine mathematische Beschreibung der dynamischen Prozesse rund um die Keimung von Samen der beiden nah verwandten Pflanzen Arabidopsis thaliana (Ackerschmalwand) und Lepidium sativum (Gartenkresse) zu liefern. Die Förderungsmittel beziehen die Forscher in den drei Ländern von den jeweiligen nationalen Förderungsorganisationen, für die Freiburger ist dies die Deutsche Forschungsgemeinschaft. Im Bereich der Biomechanik werden Experten aus Freiburg und Nottingham eng zusammenarbeiten: Leubners Gruppe untersucht, welche Hormone die Keimung und Dormanz steuern. Der Pflanzenphysiologe hat mit seinem Team außerdem eine Apparatur entwickelt, mit der sich die mechanischen Veränderungen in den Hüllgeweben messen lassen, während der Samen keimt.

Kontakt:
PD Dr. Gerhard Leubner
Institut für Biologie II, Botanik/Pflanzenphysiologie, Universität Freiburg
Tel.: 0761/203-2936
Fax: 0761/203-2612
E-Mail: gerhard.leubner@biologie.uni-freiburg.de

Media Contact

Rudolf-Werner Dreier idw

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer