Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Systembiologische Samenforschung

02.11.2009
Universität Freiburg Teil des internationalen Netzwerks "virtual Seed" - 1.7 Millionen Euro Fördermittel

Was passiert mit Pflanzensamen während der Keimung? Das untersuchen Forscher um den Pflanzenphysiologen PD Dr. Gerhard Leubner vom Institut für Biologie II, der das Teilprojekt der Universität Freiburg koordiniert, und der Hauptantragsteller Prof. Dr. Mike Holdsworth (Universität Nottingham) zukünftig gemeinsam mit der Freiburger Biomechanik-Gruppe von Prof. Dr. Thomas Speck und fünf weiteren internationalen Forschungsgruppen.

Im europäischen Wettbewerb "European Research Era-Net Plant Genomics" belegte das Konsortium "virtual Seed" (vSEED) der Universitäten Freiburg, Nottingham, Leeds (beide Großbritannien) und Wageningen (Niederlande) den ersten Platz von 54 Bewerbern. Sie erhalten für die nächsten drei Jahre eine Förderung von 1.7 Millionen Euro für insgesamt acht Labore und mehrere Postdoc-Stellen. Das Netzwerk will Mithilfe von modernen Methoden der Systembiologie molekulare, physiologische und mechanische Vorgänge in Pflanzensamen in ihrer Gesamtheit erfassen und diese verschiedenen Ebenen durch mathematische Modellierung zusammenbringen.

Samen dienen der Pflanze zum einen zur Ausbreitung in neue Lebensräume, zum anderen stellen sie das am besten gewappnete Stadium gegen Trockenheit dar. Jahre kann der schlafähnliche Zustand der sogenannten Dormanz andauern, bis die Umweltbedingungen für die Keimung optimal sind. Nicht nur für Grundlagenforscher, auch für die Landwirtschafts- und Ernährungsindustrie ist das Verständnis der Samenbiologie von Bedeutung.

Wie kommt es, dass ein scheinbar lebloses Gebilde plötzlich eine Keimwurzel austreibt, aus der eine ganze Pflanze entsteht? Ein komplexes Netzwerk aus Molekülen dirigiert diese Prozesse und reagiert auf Umwelteinflüsse. Es verändert die mechanischen Eigenschaften der Hüllgewebe und erlaubt dem Pflänzchen, im richtigen Moment durchzubrechen. "Biologen und Mathematiker müssen zusammenarbeiten, um mittels systembiologischer Modellierung eine integrative Gesamtschau der verschiedenen Ebenen herzustellen. Und genau das ist das Ziel des interdisziplinären Projekts virtual Seed." sagt Dr. Gerhard Leubner, Leiter der Arbeitsgruppe für Pflanzenphysiologie.

Für die nächsten drei Jahre stellt sich das Konsortium aus vier europäischen Partnern die Aufgabe, eine mathematische Beschreibung der dynamischen Prozesse rund um die Keimung von Samen der beiden nah verwandten Pflanzen Arabidopsis thaliana (Ackerschmalwand) und Lepidium sativum (Gartenkresse) zu liefern. Die Förderungsmittel beziehen die Forscher in den drei Ländern von den jeweiligen nationalen Förderungsorganisationen, für die Freiburger ist dies die Deutsche Forschungsgemeinschaft. Im Bereich der Biomechanik werden Experten aus Freiburg und Nottingham eng zusammenarbeiten: Leubners Gruppe untersucht, welche Hormone die Keimung und Dormanz steuern. Der Pflanzenphysiologe hat mit seinem Team außerdem eine Apparatur entwickelt, mit der sich die mechanischen Veränderungen in den Hüllgeweben messen lassen, während der Samen keimt.

Kontakt:
PD Dr. Gerhard Leubner
Institut für Biologie II, Botanik/Pflanzenphysiologie, Universität Freiburg
Tel.: 0761/203-2936
Fax: 0761/203-2612
E-Mail: gerhard.leubner@biologie.uni-freiburg.de

Rudolf-Werner Dreier | idw
Weitere Informationen:
http://www.vseed.eu
http://www.seedbiology.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kupferhydroxid-Nanopartikel schützen vor toxischen Sauerstoffradikalen im Zigarettenrauch
30.03.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung
30.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE