Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Systembiologie: Neue Datenbank für Bindungsstellen der Regulationsproteine

16.05.2011
In den letzten Jahren stieg die Menge der Daten in der Systembiologie enorm an. Damit kam der Anspruch auf, diese Datenmengen in speziellen Datenbanken zu erfassen und die komplexen Wechselwirkungen zwischen zellulären Komponenten und biologischen Funktionen zu entschlüsseln.

Die Forschungsgruppe von Mihaela Zavolan vom Biozentrum der Universität Basel hat nun zwei wichtige Regulationsproteine untersucht und ihre Bindungsstellen identifiziert. Dabei konnte sie systematische Ungenauigkeiten bei der derzeit verwendeten Technik feststellen. Ihre Ergebnisse sind in der aktuellen Ausgabe der Zeitschrift «Nature Methods» veröffentlicht und in einer neuen Datenbank erfasst.

Proteine sind Grundbausteine aller Organismen. Abgesehen von ihrer strukturellen Funktion sind sie für die Durchführung aller Lebensvorgänge verantwortlich, von Zellwachstum, Teilung und Differenzierung bis hin zum programmierten Zelltod. Zur Herstellung von Proteinen wird die genetische Information einer Zelle zunächst auf Boten-RNAs (mRNAs) kopiert. Die ribosomale Maschinerie der Zelle liest diese Information ab, um entsprechende Proteine herzustellen. Regulationsproteine (RBP), die sich an Boten-RNAs (mRNAs) binden, erhöhen oder verringern die Stabilität der RNA und haben damit Einfluss auf die Menge der Proteinproduktion. Der Verlust einer solchen regulatorischen Interaktion führt zu einer Vielzahl von Krankheiten, einschliesslich Krebs.

Die CLIP-Methode
Jede Zelle enthält Tausende von verschiedenen mRNAs und Hunderte von RBPs. Eine einzelne mRNA ist in der Regel durch mehrere RNA-bindende Proteine (RBPs) gebunden. Ein RBP wiederum ist häufig Ziel von vielen verschiedenen mRNAs. Daher ist es äusserst schwierig, genau herauszufinden, welche Wechselwirkungen für einen biologischen Prozess von Bedeutung sind. CLIP (Crosslinking and Immunoprecipitation) ist eine Methode um RNAs zu katalogisieren, die mit einem Protein eines bestimmten Zelltyps interagieren. Die CLIP-Methode ermöglicht dabei, die Interaktionsstandorte in hoher Auflösung zu lokalisieren. Die Anwendung dieser Technik auf verschiedene Proteine und Zelltypen ermöglicht den Aufbau einer Datenbank für diese Bindungsstellen. Eine Vielzahl von Wissenschaftlern nutzt diese Datenbanken zur Entschlüsselung von Regulationsverläufen.
Nützliche Fehler helfen Bindungsstellen zu identifizieren
Prof. Mihaela Zavolans Forschungsgruppe am Biozentrum der Universität Basel hat verschiedene, derzeit verwendete CLIP-Methoden analysiert. Beim Vergleich von in vitro-Messungen mit in vivo gewonnenen CLIP-Daten konnten sie zeigen, dass die bei CLIP-Experimenten durchgeführte RNA-Fragmentierung zu Ungenauigkeiten in der Anzahl der identifizierten Bindungsstellen führen kann. Grund dafür ist, dass einige Bindungsstellen im Verlauf der Versuche leichter verloren gehen als andere. Bei eingeschränkter RNA-Fragmentierung in Kombination mit entsprechender rechnerischer Analyse wird diese Fehlerquelle minimiert.

Darüber hinaus entdeckte die Forschungsgruppe, dass es bei der Experimentdurchführung aller getesteten CLIP-Verfahren zu Mutationen in den Bindungsstellen kommt. Diese «Fehler» können jedoch verwendet werden, um die RNA-RBP-Bindungsstellen sehr genau zu lokalisieren. Zeigen konnte die Zavolan-Gruppe ihre Ergebnisse anhand zweier RBPs, die eine zentrale Rolle bei der Regulation der mRNA-Stabilität spielen: HuR, das in der Regel die Stabilität der Ziel-mRNAs erhöht, sowie Argonaut 2 (Ago2), das im Allgemeinen den mRNA-Abbau fördert.

Kenntnisse über das komplizierte Geflecht der Protein-RNA-Wechselwirkungen lässt Forscher die Steuerungsmechanismen biologischer Prozesse besser verstehen. Zudem liefern die Erkenntnisse Erklärungsansätze dafür, wie kleinste Unterschiede der genetischen Codes einzelner Individuen zu Unterschieden in der Anfälligkeit für bestimmte Krankheiten innerhalb einer gesamten Population führen können. Um weitere Untersuchungen in diesem Forschungsfeld zu unterstützen, hat die Gruppe von Zavolan eine Datenbank entwickelt, die unter www.clipz.unibas.ch zugänglich ist und Forschenden ermöglicht, die von ihnen untersuchten Bindungsstellen zu lokalisieren.

Originalbeitrag
Shivendra Kishore, Lukasz Jaskiewicz, Lukas Burger, Jean Hausser, Mohsen Khorshid, Mihaela Zavolan
A quantitative analysis of CLIP methods for identifying binding sites of RNA-binding proteins

Nature Methods (2011), doi:10.1038/nmeth.1608, Published online15 May 2011

Weitere Auskünfte
Prof. Dr. Mihaela Zavolan, Biozentrum der Universität Basel, Bioinformatik, Klingelbergstrasse 50/70, 4056 Basel, Tel. 061 267 15 77, E-Mail: mihaela.zavolan@unibas.ch

Heike Sacher, Public Relations, Biozentrum, Universität Basel, Klingelbergstrasse 50/70, 4056 Basel, Tel. 061 267 14 49, E-Mail heike.sacher@unibas.ch

Heike Sacher | idw
Weitere Informationen:
http://www.unibas.ch

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Evolutionsvorteil der Strandschnecke
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Mobile Goldfinger
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Von Agenten, Algorithmen und unbeliebten Wochentagen

28.03.2017 | Unternehmensmeldung

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit