Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Systembiologie: Neue Datenbank für Bindungsstellen der Regulationsproteine

16.05.2011
In den letzten Jahren stieg die Menge der Daten in der Systembiologie enorm an. Damit kam der Anspruch auf, diese Datenmengen in speziellen Datenbanken zu erfassen und die komplexen Wechselwirkungen zwischen zellulären Komponenten und biologischen Funktionen zu entschlüsseln.

Die Forschungsgruppe von Mihaela Zavolan vom Biozentrum der Universität Basel hat nun zwei wichtige Regulationsproteine untersucht und ihre Bindungsstellen identifiziert. Dabei konnte sie systematische Ungenauigkeiten bei der derzeit verwendeten Technik feststellen. Ihre Ergebnisse sind in der aktuellen Ausgabe der Zeitschrift «Nature Methods» veröffentlicht und in einer neuen Datenbank erfasst.

Proteine sind Grundbausteine aller Organismen. Abgesehen von ihrer strukturellen Funktion sind sie für die Durchführung aller Lebensvorgänge verantwortlich, von Zellwachstum, Teilung und Differenzierung bis hin zum programmierten Zelltod. Zur Herstellung von Proteinen wird die genetische Information einer Zelle zunächst auf Boten-RNAs (mRNAs) kopiert. Die ribosomale Maschinerie der Zelle liest diese Information ab, um entsprechende Proteine herzustellen. Regulationsproteine (RBP), die sich an Boten-RNAs (mRNAs) binden, erhöhen oder verringern die Stabilität der RNA und haben damit Einfluss auf die Menge der Proteinproduktion. Der Verlust einer solchen regulatorischen Interaktion führt zu einer Vielzahl von Krankheiten, einschliesslich Krebs.

Die CLIP-Methode
Jede Zelle enthält Tausende von verschiedenen mRNAs und Hunderte von RBPs. Eine einzelne mRNA ist in der Regel durch mehrere RNA-bindende Proteine (RBPs) gebunden. Ein RBP wiederum ist häufig Ziel von vielen verschiedenen mRNAs. Daher ist es äusserst schwierig, genau herauszufinden, welche Wechselwirkungen für einen biologischen Prozess von Bedeutung sind. CLIP (Crosslinking and Immunoprecipitation) ist eine Methode um RNAs zu katalogisieren, die mit einem Protein eines bestimmten Zelltyps interagieren. Die CLIP-Methode ermöglicht dabei, die Interaktionsstandorte in hoher Auflösung zu lokalisieren. Die Anwendung dieser Technik auf verschiedene Proteine und Zelltypen ermöglicht den Aufbau einer Datenbank für diese Bindungsstellen. Eine Vielzahl von Wissenschaftlern nutzt diese Datenbanken zur Entschlüsselung von Regulationsverläufen.
Nützliche Fehler helfen Bindungsstellen zu identifizieren
Prof. Mihaela Zavolans Forschungsgruppe am Biozentrum der Universität Basel hat verschiedene, derzeit verwendete CLIP-Methoden analysiert. Beim Vergleich von in vitro-Messungen mit in vivo gewonnenen CLIP-Daten konnten sie zeigen, dass die bei CLIP-Experimenten durchgeführte RNA-Fragmentierung zu Ungenauigkeiten in der Anzahl der identifizierten Bindungsstellen führen kann. Grund dafür ist, dass einige Bindungsstellen im Verlauf der Versuche leichter verloren gehen als andere. Bei eingeschränkter RNA-Fragmentierung in Kombination mit entsprechender rechnerischer Analyse wird diese Fehlerquelle minimiert.

Darüber hinaus entdeckte die Forschungsgruppe, dass es bei der Experimentdurchführung aller getesteten CLIP-Verfahren zu Mutationen in den Bindungsstellen kommt. Diese «Fehler» können jedoch verwendet werden, um die RNA-RBP-Bindungsstellen sehr genau zu lokalisieren. Zeigen konnte die Zavolan-Gruppe ihre Ergebnisse anhand zweier RBPs, die eine zentrale Rolle bei der Regulation der mRNA-Stabilität spielen: HuR, das in der Regel die Stabilität der Ziel-mRNAs erhöht, sowie Argonaut 2 (Ago2), das im Allgemeinen den mRNA-Abbau fördert.

Kenntnisse über das komplizierte Geflecht der Protein-RNA-Wechselwirkungen lässt Forscher die Steuerungsmechanismen biologischer Prozesse besser verstehen. Zudem liefern die Erkenntnisse Erklärungsansätze dafür, wie kleinste Unterschiede der genetischen Codes einzelner Individuen zu Unterschieden in der Anfälligkeit für bestimmte Krankheiten innerhalb einer gesamten Population führen können. Um weitere Untersuchungen in diesem Forschungsfeld zu unterstützen, hat die Gruppe von Zavolan eine Datenbank entwickelt, die unter www.clipz.unibas.ch zugänglich ist und Forschenden ermöglicht, die von ihnen untersuchten Bindungsstellen zu lokalisieren.

Originalbeitrag
Shivendra Kishore, Lukasz Jaskiewicz, Lukas Burger, Jean Hausser, Mohsen Khorshid, Mihaela Zavolan
A quantitative analysis of CLIP methods for identifying binding sites of RNA-binding proteins

Nature Methods (2011), doi:10.1038/nmeth.1608, Published online15 May 2011

Weitere Auskünfte
Prof. Dr. Mihaela Zavolan, Biozentrum der Universität Basel, Bioinformatik, Klingelbergstrasse 50/70, 4056 Basel, Tel. 061 267 15 77, E-Mail: mihaela.zavolan@unibas.ch

Heike Sacher, Public Relations, Biozentrum, Universität Basel, Klingelbergstrasse 50/70, 4056 Basel, Tel. 061 267 14 49, E-Mail heike.sacher@unibas.ch

Heike Sacher | idw
Weitere Informationen:
http://www.unibas.ch

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen
20.09.2017 | Veterinärmedizinische Universität Wien

nachricht Molekulare Kraftmesser
20.09.2017 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik