Synthetische Biotechnologie ermöglicht nachhaltige Produktion bioaktiver Naturstoffe

Taxadien Synthase mit dem Substrat Geranylgeranyldiphosphat in der aktiven Tasche des Enzymes. Die grünen Punkte zeigen die katalytisch relevanten Mg2+-Ionen. Bild: Max Hirte / TUM

In der Natur gibt es viele wertvolle Arznei- und Nährstoffe. Diese sind jedoch oft entweder schwer zugänglich oder ihre industrielle Gewinnung schadet den Tier- und Pflanzenpopulationen, in denen sie vorkommen. So enthält beispielsweise die Rinde der pazifischen Eibe (Taxus brevifolia) den Wirkstoff Taxol, der als Medikament gegen Brust-, Eierstock- und Lungenkrebs eingesetzt wird. Jedoch ist die Eibenart nicht weit verbreitet und geschützt.

Auch die lebensnotwendigen Omega-3-Fettsäuren, beispielsweise ein Bestandteil von Säuglingsnahrungen, werden derzeit vor allem aus Fischen und Krebstieren hergestellt – eine zusätzliche Belastung für die ohnehin schon stark beanspruchten marinen Ökosysteme.

Ziel der Arbeitsgruppe um Thomas Brück, Professor für Industrielle Biokatalyse an der Technischen Universität München, ist es daher, mit Hilfe von Methoden der Biochemie, Bioinformatik und Biotechnologie chemische Wertstoffe nachhaltig und doch in industriellen Mengen zu gewinnen.

„Gold“ aus Stroh – eine Hefe mit hohem Potential

Nun ist es Brück und seinem Team gelungen, die bislang nicht biotechnologisch genutzte Hefe Trichosporon oleaginosus genetisch so zu verändern, dass sie die essentiellen Omega-3-Fettsäuren Alpha-Linolensäure (ALA), Eicosapentaensäure (EPA) sowie entzündungshemmend wirkende konjugierte Linolensäuren (CLAs) herstellt.

Als Energiequelle kann die Hefe dabei Nährmedien auf Basis von fast allen in der Agrarwirtschaft anfallenden Abfällen wie Stroh, Holzspäne, Weizenkleie und sogar bisher ungenutzte marine Reststoffe wie Krabbenschalen verwerten. „Diese Hefe ist etwas Besonderes, da sie auch monomere Zuckerstoffe verwerten kann, die sonst nur sehr schwer abgebaut werden können“, erklärt Brück. „Wir gewinnen also aus Abfällen hochwertige chemische Stoffe, und das ohne die Umwelt zu belasten.“

Geraten Trichosporon oleaginosus-Zellen in der Natur unter Stress, beispielsweise durch Mangel an Stickstoff oder Phosphat, lagern sie Fette als Energiereserve ein. Zwar wächst die Hefe dann nicht mehr optimal, doch kann das in Form von Trigylceriden einlagerte Fett bis zu 70 Prozent ihres Trockengewichts erreichen.

In zukünftigen Projekten wollen die Wissenschaftler um Brück die ölbildende Hefe daher so weiter modifizieren, dass sie auch unter normalen Nährstoffbedingungen die gewünschten Fette in ausreichendem Maß herstellt, ohne das Ihr Wachstum gehemmt wird.

Von der Simulation zum maßgeschneiderten Enzym

Einen Schritt weiter geht eine Methodik, die die Wissenschaftler um Brück kürzlich in der renommierten Fachzeitschrift „Proceedings of the National Academy of Sciences“ (PNAS) vorstellten: Mit Hilfe molekularmechanischer Computersimulationen konnten sie die einzelnen Schritte aufklären, mit denen eine bestimmte Klasse von Enzymen Wirkstoffe herstellt. Zu diesen gehören auch Vorstufen des Krebsmedikaments Taxol.

Allein durch Simulationen am Computer gelang es Brück und seinem Team erstmals, sämtliche Zwischenschritte der an diesem Enzym ablaufenden komplexen Kaskade von Reaktionen korrekt vorherzusagen. Auf diese Weise konnten sie aufklären, wie das Enzym genau arbeitet und wie dessen Struktur und Funktion zusammenhängen. Mit klassischen biochemischen Methoden war dies zuvor nicht möglich gewesen.

„Dieses Vorgehen ist sehr vielversprechend, denn auf Basis der Simulationen können wir Enzyme gezielt verändern und die daraufhin entstehenden Produkte vorhersagen“, sagt Brück. „Wenn wir dann noch verschiedene solcher Enzyme miteinander verschalten, ist es sogar möglich, komplett neue Moleküle zu schaffen, die in der Natur gar nicht vorkommen.“

Durch Verschalten einer Diterpensynthase mit einer Hydroxylase-Reduktase in einem Escherichia coli-basierten Produktionsystem entwickelten die Wissenschaftlern eine effiziente Synthese des trihydroxylierten Diterpens Cyclooctatin, einem potenten Entzüngungshemmer.

Am Computer identifizierten sie eine für Diterpenmakrozyklen spezifische Reduktase im erst kürzlich erst kürzlich beschriebenen Genom des Bakteriums Streptomyces afghaniensis. Die biotechnologische Nutzung dieses Proteins ermöglichte es den Wissenschaftlern, die Ausbeute des Wirkstoffes im Vergleich zum nativen Produzenten um einen Faktor 43 zu erhöhen.

In Zukunft könnten Biotechnologen einmal ähnlich wie Ingenieure vorgehen, die am Computer die Produktionsschritte für ein neues Auto entwerfen. Mit dem Wissen der Synthetischen Biotechnologie könnten sie dann den Syntheseweg zu einem neuen Wirkstoff aus einer Kette von Reaktionen modifizierter Enzyme zusammenstellen. Das lange und sehr aufwändige „Austüfteln“ neuer Synthesewege im Labor, wie es heute notwendig ist, würde damit erheblich verkürzt.

Die aktuellen Forschungsarbeiten der Arbeitsgruppe Brück werden mit Mitteln der Europäischen Gemeinschaft (Projekt ChiBio), der Bundesministerien für Bildung und Forschung (Advanced Biomass Value, SysBioTerp, OMCBP) und für Wirtschaft (Projekt Bio@Jet) sowie der bayrischen Ministerien für Wissenschaft (Algenflugkraft), Wirtschaft (Algenflugkraft, Nachhaltige Produktion von Bioinsektiziden) und Umwelt (Geobiotechnologie und PHB) gefördert.

Aufgrund des enormen Potenzials dieser Methoden hat die Technische Universität München Anfang Mai den Lehr- und Forschungsschwerpunkt Synthetische Biotechnologie ins Leben gerufen. Die Werner Siemens-Stiftung unterstützt die Einrichtung des Schwerpunkts mit 11,5 Millionen Euro.

Publikationen:

P. Schrepfer, A. Buettner, C. Goerner, M. Hertel, J. van Rijn, F. Wallrapp, W. Eisenreich, V. Sieber, R. Kourist, T. Brück; Identification of amino acid networks governing catalysis in the closed complex of class I terpene synthases; PNAS, 2016, 113(8), E958-E967 – DOI: 10.1073/pnas.1519680113
Link: http://www.pnas.org/content/113/8/E958.abstract

Görner, C., Redai, V., Bracharz, F., Schrepfer, P., Garbe, D., & Brück, T. (2016). Genetic engineering and production of modified fatty acids by the non-conventional oleaginous yeast Trichosporon oleaginosus ATCC 20509. Green Chemistry, 2016, 18, 2037–2046 – DOI: 10.1039/c5gc01767j
Link: http://pubs.rsc.org/en/content/articlelanding/gc/2016/c5gc01767j#!divAbstract

Christian Görner, Patrick Schnepfer, Veronika Redai, Frank Wallrapp, Bernhard Loll, Wolfgang Eisenreich, Martin Haslbeck und Thomas Brück; Identification, characterization and molecular adaptation of class I redox systems for the production of hydroxylated diterpenoids;
Micobial Cell Factories (2016) 15:86 – DOI: 10.1186/s12934-016-0487-6
Link: https://microbialcellfactories.biomedcentral.com/articles/10.1186/s12934-016-048…

Kontakt:

Prof. Dr. Thomas Brück
Technische Universität München
Professur für Industrielle Biokatalyse
Lichtenbergstr. 4, 85748 Garching, Germany
Tel.: +49 89 289 13253 – E-Mail: brueck@tum.de
Web: http://www.ibc.ch.tum.de

Media Contact

Dr. Ulrich Marsch Technische Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Ideen für die Zukunft

TU Berlin präsentiert sich vom 22. bis 26. April 2024 mit neun Projekten auf der Hannover Messe 2024. Die HANNOVER MESSE gilt als die Weltleitmesse der Industrie. Ihr diesjähriger Schwerpunkt…

Peptide auf interstellarem Eis

Dass einfache Peptide auf kosmischen Staubkörnern entstehen können, wurde vom Forschungsteam um Dr. Serge Krasnokutski vom Astrophysikalischen Labor des Max-Planck-Instituts für Astronomie an der Universität Jena bereits gezeigt. Bisher ging…

Wasserstoff-Produktion in der heimischen Garage

Forschungsteam der Frankfurt UAS entwickelt Prototyp für Privathaushalte: Förderzusage vom Land Hessen für 2. Projektphase. Wasserstoff als Energieträger der Zukunft ist nicht frei verfügbar, sondern muss aufwendig hergestellt werden. Das…

Partner & Förderer