Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Synthetische Biologie: TUM-Forscher entwickeln neuartiges Leuchtprotein

09.03.2011
Seit Mitte der 1990er Jahre ist ein knallgrün fluoreszierendes Eiweiß weltweit in biowissenschaftlichen Forschungslabors im Einsatz.

Protein-Designer der Technischen Universität München (TUM) in Weihenstephan haben das bekannte Leuchtprotein jetzt weiterentwickelt: Sie haben es geschafft, eine künstliche Aminosäure in das natürliche Eiweiß einzubauen und so mittels synthetischer Biologie ein neuartiges fluoreszierendes Biomolekül herzustellen. Dieses Leuchtprotein schimmert dank Ausnutzung eines besonderen physikalischen Effekts türkis, wenn es mit ultraviolettem Licht angeregt wird, und weist bislang unerreichte Eigenschaften auf.


Wechselspiel zweier Farbstoffe in dem biosynthetischen Leuchtprotein
(Grafik: A. Skerra / TUM)

Proteine sind die wichtigsten biomolekularen Funktionsträger in der Natur mit zahlreichen Anwendungsmöglichkeiten in der biowissenschaftlichen Grundlagenforschung, Biotechnologie und Medizin. Wie modifiziert man solche Eiweißstoffe möglichst effizient, um gewünschte Eigenschaften zu erreichen? Bislang verändert man sie in der Regel entweder auf chemischem Weg oder mit gentechnologischen Methoden. Ein Team um Prof. Dr. Arne Skerra vom Lehrstuhl für Biologische Chemie der TUM hat nun eine elegantere kombinierte Lösung gefunden: Die Forscher können unter Erweiterung des ansonsten universell gültigen genetischen Codes Bakterienzellen dazu bringen, maßgeschneiderte Proteine mit künstlichen chemischen Bausteinen zu produzieren. Die Probe aufs Exempel machten sie mit einer besonders harten Nuss: Die Forscher wollten eine nicht-natürliche Aminosäure an einer ganz bestimmten Stelle in ein verbreitet eingesetztes natürliches Protein einbauen.

Dieses Eiweiß ist in der Bioforschung als „GFP“ (= grün fluoreszierendes Protein) wohlbekannt: Es leuchtet knallgrün und entstammt ursprünglich einer Meeresqualle, der es in dunklen Wassertiefen Sichtbarkeit verleiht. Als synthetischen Baustein wählte das Team einen hellviolett leuchtenden Cumarin-Farbstoff, der als Seitenkette einer künstlichen Aminosäure diente. Diese synthetische Aminosäure „fütterten“ die Forscher einer Laborkultur von Escherichia-coli-Bakterien – als Arbeitspferde der Gentechnik dienenden Mikroorganismen, deren natürliche Geschwister auch im menschlichen Darm zu finden sind. Da das Team den Bakterien auch den abgewandelten genetischen Bauplan für das GFP – einschließlich der benötigten Biosynthesemaschinerie – übertragen hatte, bauten diese die fluoreszenzaktive Aminosäure an einer genau definierten Stelle in das Leuchtprotein ein.

Dieser Ort im GFP war mit Bedacht gewählt, erläutert Prof. Skerra: „Wir haben die synthetische Aminosäure innerhalb des natürlichen Proteins in einer ganz bestimmten Entfernung von dem natürlicherweise darin vorkommenden Leuchtzentrum positioniert“. Die Forscher spekulierten dabei auf den so genannten Förster-Resonanzenergietransfer- oder kurz: FRET-Effekt. Dieser nach dem deutschen Physikochemiker Theodor Förster benannte Prozess der physikalischen Energieübertragung sorgt dafür, dass unter günstigen geometrischen Bedingungen strahlungsfrei Energie von einem angeregten Farbstoff zu einem anderen fließen kann.

Genau dieser FRET-Effekt konnte bei dem neu entwickelten Leuchtprotein in eleganter Weise realisiert werden. Die Forscher legten den Abstand zwischen dem eingeführten chemischen Farbstoff und dem biologischen Grünblau-(genauer: Cyan)-Farbstoff der Meeresqualle nämlich genau so, dass das Wechselspiel der beiden Pigmente in dem resultierenden Verbundmolekül zu einer ganz neuartigen Fluoreszenzaktivität führte: Wegen der extremen Nähe der beiden Leuchtstoffe ist das Hellviolett der künstlichen Aminosäure nicht mehr messbar, sondern es dominiert der typische grünblaue Farbton des Leuchtproteins. „Das Besondere ist, dass sich dank der eingebauten künstlichen Aminosäure sein Leuchten im Gegensatz zu dem natürlichen GFP schon mit einer handelsüblichen Schwarzlichtlampe auslösen lässt, anstatt einen teuren Speziallaser zu bemühen“, erklärt Sebastian Kuhn, der diese wegweisenden Experimente im Rahmen seiner Doktorarbeit realisiert hat.

Das Herstellungsprinzip des neuartigen Biomoleküls, das sich durch eine bislang schwer erreichbare, besonders große Differenz in der Wellenlänge zwischen anregendem und ausgesandtem Licht auszeichnet, dürfte zahlreiche interessante Anwendungen eröffnen, so Skerra: „Wir haben jetzt gezeigt, dass die Technik grundsätzlich funktioniert. Mit unserer Methode kann man in Zukunft Leuchtproteine in diversen Farben für vielfältige Anwendungen maßgeschneidert herstellen.“ Dieses Forschungsprojekt wurde aus Mitteln der Deutschen Forschungsgemeinschaft im Rahmen des Exzellenzclusters Munich Center for Integrated Protein Science (CIPS-M) unterstützt.

Publikation:
Sebastian M. Kuhn, Marina Rubini, Michael A. Müller und Arne Skerra (2011): Biosynthesis of a fluorescent protein with extreme pseudo-Stokes shift by introducing a genetically encoded non-natural amino acid outside the fluorophore. Journal of the American Chemical Society 133, 3708-3711. Online-Vorabveröffentlichung unter http://pubs.acs.org/doi/abs/10.1021/ja1099787. (DOI: 10.1021/ja1099787)
Kontakt:
Prof. Dr. Arne Skerra
Lehrstuhl für Biologische Chemie
Technische Universität München
Emil-Erlenmeyer-Forum 5
85350 Freising-Weihenstephan
Tel.: 08161 / 71-4350
E-Mail: skerra@tum.de

Dr. Ulrich Marsch | Technische Universität München
Weitere Informationen:
http://www.wzw.tum.de/bc

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kontinentalrand mit Leckage
27.03.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Neuen molekularen Botenstoff bei Lebererkrankungen entdeckt
27.03.2017 | Universitätsmedizin Mannheim

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

Zweites Symposium 4SMARTS zeigt Potenziale aktiver, intelligenter und adaptiver Systeme

27.03.2017 | Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fließender Übergang zwischen Design und Simulation

27.03.2017 | HANNOVER MESSE

Industrial Data Space macht neue Geschäftsmodelle möglich

27.03.2017 | HANNOVER MESSE

Neue Sicherheitstechnik ermöglicht Teamarbeit

27.03.2017 | HANNOVER MESSE