Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Synthese mit Schablone

01.05.2009
Kohlenstoff-freies Fulleren-Analogon

Die Entdeckung eines fußballförmigen Moleküls aus 60 Kohlenstoffatomen war eine kleine Revolution in der Chemie: Fullerene, d. h. sphärische, hochsymmetrische Moleküle aus Kohlenstoffatomen, sind neben Diamant und Graphit eine weitere Modifikation des Kohlenstoffs.

Der C60-"Fußball" ist aber bei weitem nicht das einzige Fulleren. Zu den weniger stabilen Verwandten gehört das C80-Fulleren. Sieben verschiedene Strukturvarianten sind möglich, in denen sich 80 Kohlenstoffatome zu einem symmetrischen, sphärischen Gebilde anordnen lassen. Zu den Varianten, die so instabil sind, dass sie sich bisher nicht herstellen ließen, zählt die Ikosaedergeometrie (Ikosaeder = Zwanzigflächner).

Ein Team um Manfred Scheer von der Universität Regensburg hat nun statt dessen das erstes Beispiel eines anorganischen, Kohlenstoff-freien C80-Analogons synthetisiert. Wie es in der Zeitschrift Angewandte Chemie berichtet, lässt sich das fullerenartige Bausteinsystem mit Hilfe einer Art Schablone herstellen ("templatkontrollierte Aggregation").

Die Forscher verwenden für ihre Synthese Pentaphosphoferrocen (an ein Eisenatom gebundener Fünfring aus Phosphoratomen) und Kupferchlorid. Als Schablone dient ihnen ein Carboran, eine Verbindung aus Kohlenstoff-, Bor- und Wasserstoffatomen passender Größe (ca. 0,8 nm) und Form (pseudofünffache Symmetrie). Die einzelnen Bausteine aggregieren um das Carboran herum zu einem sphärischen Supermolekül mit fullerenartiger Geometrie und schließen das Carboran als "Gastmolekül" im Inneren ein.

So erhielten die Wissenschaftler eine Struktur, die einem ikosaedrischen Fulleren aus 80 Kohlenstoffatomen entspricht. Dieses Gerüst wird aus zwanzig Kupfer- und sechzig Phosphoratomen aufgebaut, die zu zwölf fünfgliedrigen Ringen aus Phosphoratomen und 30 sechsgliedrigen Ringen aus je zwei Kupfer- und vier Phosphoratomen angeordnet sind. Diese anorganische Hülle steht in elektronischer Wechselwirkung mit dem eingeschlossenen Gastmolekül.

"Die templatkontrollierte Aggregation hat sich damit als ein effizienter Ansatz zur Herstellung großer vollkommen sphärischer Moleküle mit fullerenartiger Topologie erwiesen," sagt Scheer. "Das Gastmolekül bestimmt dabei die Größe und Zusammensetzung des fullerenartigen Produkts."

Angewandte Chemie: Presseinfo 17/2009

Autor: Manfred Scheer, Universität Regensburg (Germany), http://www.chemie.uni-regensburg.de/Anorganische_Chemie/Scheer/scheer.html

Angewandte Chemie, doi: 10.1002/ange.200900342

Angewandte Chemie, Postfach 101161, 69495 Weinheim, Germany

Dr. Renate Hoer | GDCh
Weitere Informationen:
http://presse.angewandte.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Nerven steuern die Bakterienbesiedlung des Körpers
26.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Mit künstlicher Intelligenz zum chemischen Fingerabdruck
26.09.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste lichtgetriebene Stromquelle der Welt

Die Stromregelung ist eine der wichtigsten Komponenten moderner Elektronik, denn über schnell angesteuerte Elektronenströme werden Daten und Signale übertragen. Die Ansprüche an die Schnelligkeit der Datenübertragung wachsen dabei beständig. In eine ganz neue Dimension der schnellen Stromregelung sind nun Wissenschaftler der Lehrstühle für Laserphysik und Angewandte Physik an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) vorgedrungen. Ihnen ist es gelungen, im „Wundermaterial“ Graphen Elektronenströme innerhalb von einer Femtosekunde in die gewünschte Richtung zu lenken – eine Femtosekunde entspricht dabei dem millionsten Teil einer milliardstel Sekunde.

Der Trick: die Elektronen werden von einer einzigen Schwingung eines Lichtpulses angetrieben. Damit können sie den Vorgang um mehr als das Tausendfache im...

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Im Spannungsfeld von Biologie und Modellierung

26.09.2017 | Veranstaltungen

Archaeopteryx, Klimawandel und Zugvögel: Deutsche Ornithologen-Gesellschaft tagt an der Uni Halle

26.09.2017 | Veranstaltungen

Unsere Arbeitswelt von morgen – Polarisierendes Thema beim 7. Unternehmertag der HNEE

26.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Europas erste Testumgebung für selbstfahrende Züge entsteht im Burgenland

26.09.2017 | Verkehr Logistik

Nerven steuern die Bakterienbesiedlung des Körpers

26.09.2017 | Biowissenschaften Chemie

Mit künstlicher Intelligenz zum chemischen Fingerabdruck

26.09.2017 | Biowissenschaften Chemie