Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Synapsen sind immer in den Startlöchern

24.10.2014

Mit Neurotransmitter befüllte Vesikel berühren die Zellmembran und können nur deshalb blitzschnell freigesetzt werden

Während Nervenzellen Informationen in ihrem Inneren schnell als elektrische Signale weiterleiten, kommunizieren sie untereinander an speziellen Kontaktstellen, den Synapsen. Dort werden chemische Botenstoffe, die Neurotransmitter, in sogenannten Vesikeln gespeichert. Wird eine Synapse aktiv, verschmelzen einige dieser Vesikel mit der Zellmembran und schütten ihren Inhalt aus.


Dreidimensionale Rekonstruktion einer Synapse im Mausgehirn. Akut freisetzbare, fusionsfähige synaptische Vesikel (blau, etwa 45 Millionstel Millimeter Durchmesser) sind an der Zellmembran angedockt.

© MPI f. Experimentelle Medizin/Benjamin H. Cooper

Damit bei diesem Prozess keine wertvolle Zeit verloren geht, halten Synapsen stets einige akut freisetzbare Vesikel bereit. Wissenschaftler am Max-Planck-Institut für experimentelle Medizin in Göttingen konnten nun mit Hilfe hoch auflösender, dreidimensionaler Elektronenmikroskopie nachweisen, dass diese fusionsfähigen Vesikel eine ganz besondere Eigenschaft haben:

Sie stehen bereits lange vor der eigentlichen Verschmelzung eng mit der Zellmembran in Kontakt. Darüber hinaus entschlüsselte das Forscherteam den molekularen Mechanismus, über den die Vesikel diesen Andockmechanismus vollziehen.

An der Verschmelzung der Neurotransmitter-Vesikel mir der Zellmembran sind viele Eiweißbausteine beteiligt, die eng zusammenarbeiten, sich gegenseitig kontrollieren und sicherstellen, dass alle 'Beteiligten' stets am richtigen Platz stehen. Man spricht von einer Fusionsmaschinerie, und der Vergleich passt: Ist ein Zahnrad im Uhrwerk kaputt, bleiben die Zeiger stehen. In ähnlicher Weise stören fehlerhafte Moleküle oder ihr Verlust den Betriebsablauf in der Synapse.

Forschungsarbeiten von Nils Brose und seinem Kollegen JeongSeop Rhee am Max-Planck-Institut für Experimentelle Medizin in Göttingen hatten bereits vor Jahren gezeigt, dass die Informationsweiterleitung an der Synapse in genetisch veränderten Mäusen, bei denen alle bekannten Gene der sogenannten Munc13- oder CAPS-Proteine ausgeschaltet wurden, stark beeinträchtigt ist.

Fehlt Munc13, kommt die Neurotransmitterfreisetzung sogar vollständig zum Erliegen, ohne dass sich die Nervenzellen unter dem Lichtmikroskop von denen gesunder Mäuse unterscheiden. Die Ergebnisse von Brose und Rhee zeigten, dass jede Synapse eine kleine Menge 'akut freisetzbarer', fusionsfähiger Vesikel bereithalten muss, um jederzeit und unmittelbar auf ein Signal reagieren zu können.

Doch wie überführen Munc13 und CAPS die Vesikel in einen solchen fusionsfähigen Zustand? Um diese Frage zu beantworten, nahmen die Göttinger Wissenschaftler die synaptischen Kontakte im wahrsten Sinne unter die Lupe. Die Neurobiologen Cordelia Imig und Ben Cooper, die bereits seit vielen Jahren mit Brose und Rhee zusammenarbeiten, verwendeten hierzu ein Hochdruck-Gefrierverfahren.

Dabei werden Nervenzellen im Gehirngewebe blitzschnell und unter hohem Druck eingefroren, sodass sich keine störenden Eiskristalle bilden und die Feinstruktur der Zellen besonders gut erhalten bleibt. Die so erhaltenen Proben wurden dann per Elektronentomographie analysiert. Bei dieser Methode werden ähnlich wie bei der medizinischen Computertomographie elektronenmikroskopische Aufnahmen von derselben Struktur aus vielen verschiedenen Winkeln aufgenommen. Die einzelnen Bilder können dann am Computer zu einer hoch aufgelösten, dreidimensionalen Abbildung einer Synapse zusammengesetzt werden (siehe Abbildung).

"Unsere Ergebnisse zeigten, dass akut freisetzbare Vesikel in gesunden Synapsen die Zellmembran berühren", erklärt Cooper. "Fehlen jedoch Munc13 und CAPS Proteine, erreichen die Vesikel die aktive Zone nicht mehr und stauen sich wenige Nanometer davon entfernt an." Zu ihrer großen Überraschung beobachteten die Forscher weiterhin, dass auch sogenannte SNARE-Proteine, die mit Munc13 und CAPS in den Nervenenden zusammenarbeiten, an diesem Andockungsprozess beteiligt sind.

SNARE-Proteine sitzen in gesunden Synapsen in Zell- und Vesikelmembranen und steuern die Verschmelzung der beiden Membranen während der Neurotransmitterfreisetzung. Nähert sich ein Vesikel der Zellmembran, legen sich die einzelnen SNARE-Moleküle einem Reißverschluss ähnlich aneinander und ziehen so die Membranen eng zusammen. In diesem Zustand - quasi in den Startlöchern - warten die Vesikel auf den Startschuss für ihre Fusion.

Die Ergebnisse der Göttinger Neurobiologen belegen, dass Vesikel- und Zellmembran in der Synapse bereits vor dem Signal zur Verschmelzung durch die Zusammenarbeit der Munc13-, CAPS- und SNARE-Proteine eng zusammengezogen werden. Nur so kann eine schnelle und kontrollierte Informationsweiterleitung an der Synapse sichergestellt werden, durch die wir gezielt auf Informationen aus unserer Umwelt reagieren können.

"Dass Synapsen extrem schnell sein müssen, um all die vielen komplexen Hirnfunktionen auszuführen, war schon lange klar. Unsere Studie zeigt zum ersten Mal, wie das auf Molekülebene und auf der Ebene der synaptischen Vesikel bewerkstelligt wird", meint Brose. Da fast alle an diesem Prozess beteiligten Eiweißbausteine auch an neurologischen und psychiatrischen Erkrankungen beteiligt sind, gehen die Göttinger Wissenschaftler davon aus, dass ihre Entdeckung bald auch für die medizinische Forschung nutzbar sein wird.

Ansprechpartner

Prof. Dr. Nils Brose

Max-Planck-Institut für experimentelle Medizin, Göttingen
Telefon:+49 551 3899-725Fax:+49 551 3899-715
 

Dr. Jeong-Seop Rhee

Max-Planck-Institut für experimentelle Medizin, Göttingen
Telefon:+49 551 3899-694Fax:+49 551 3899-715

Originalpublikation

 
Imig, C., Min, S.-W., Krinner, S., Arancillo, M., Rosenmund, C., Südhof, T.C., Rhee, J.-S., Brose, N. and Cooper, B.H.
The morphological and molecular nature of synaptic vesicle priming at presynaptic active zones.

Prof. Dr. Nils Brose | Max-Planck-Institut

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Sollbruchstellen im Rückgrat - Bioabbaubare Polymere durch chemische Gasphasenabscheidung
02.12.2016 | Gesellschaft Deutscher Chemiker e.V.

nachricht "Fingerabdruck" diffuser Protonen entschlüsselt
02.12.2016 | Universität Leipzig

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie