Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Synapsen – Beständigkeit im Wandel

17.04.2014

Synapsen bleiben stabil, wenn ihre Komponenten koordiniert wachsen

Synapsen sind die Kontaktstellen für die Informationsübertragung zwischen Nervenzellen. Ohne sie können wir keine Gedanken formen oder uns an etwas erinnern. Für bleibende Erinnerungen müssen Synapsen zum Teil über sehr lange Zeiträume stabil bleiben. Doch wie kann eine Synapse die Zeit überdauern, wenn ihre Bausteine regelmäßig erneuert werden müssen?


Beim Lernen wachsen auf Nervenzellen Fortsätze, an deren Ende sich eine Synapse befindet (links im Original, rechts in der Rekonstruktion). Wächst die Synapse mit einem ausgewogenen Verhältnis aller Komponenten, bleibt sie auch über längere Zeiten stabil.

© MPI f. Neurobiologie/ Meyer

Einer Antwort auf diese Frage sind Wissenschaftler des Max-Planck-Instituts für Neurobiologie in Martinsried bei München nun näher gekommen. Sie konnten zeigen, dass beim Aufbau einer Synapse alle Bausteine im "richtigen" Verhältnis zueinander wachsen müssen.

Nur so entsteht eine langfristig funktionstüchtige Synapse, Grundvoraussetzung für Lernen und Gedächtnis. In solch einem interaktiven System sollte der Austausch einzelner Moleküle möglich sein, während die übrigen Komponenten die Synapse stabilisieren.

Alles ist vergänglich. Das gilt auch für die Proteine, die Bausteine, aus denen die Kontaktstellen zwischen unseren Nervenzellen bestehen. Dank dieser Proteine können an einer Synapse ankommende Informationen verpackt und von der nächsten Nervenzelle auch aufgenommen werden.

Lernen wir etwas Neues, dann werden neue Synapsen aufgebaut oder bestehende verstärkt. Für dauerhafte Erinnerungen müssen Synapsen über längere Zeiträume, bis hin zu einem ganzen Leben, stabil bleiben. Wie eine Synapse durchgehend stabil bleiben kann, obwohl ihre Proteine regelmäßig erneuert werden müssen, darauf haben Forscher des Max-Planck-Instituts für Neurobiologie in Martinsried bei München nun einen Hinweis gefunden.

„Uns hat zunächst einmal interessiert, was mit den verschiedenen Komponenten einer Synapse passiert, wenn sie während des Lernens wächst”, berichtet Volker Scheuss, der Leiter der Studie. Ein Verständnis des Komponentenwachstums könnte auch Auskunft über die langfristige Stabilität von Synapsen geben. So untersuchten die Forscher in Kulturschalen das Wachstum von Synapsen nach einem (Lern)Reiz. Dazu aktivierten sie einzelne Synapsen gezielt mit dem Botenstoff Glutamat.

Schon seit längerem ist bekannt, dass Glutamat bei Lernvorgängen eine wichtige Rolle spielt und das Wachstum von Synapsen anregt. In den folgenden Stunden beobachteten die Forscher die stimulierten und Kontroll-Synapsen unter dem Zwei-Photonen-Mikroskop. Zur Bestätigung der beobachteten Effekte untersuchten sie im Anschluss einzelne Synapsen noch mit Hilfe des Elektronenmikroskops. „Das war eine ziemliche Sisyphus-Arbeit, wenn man bedenkt, dass eine einzelne Synapse gerade mal einen 1000stel Millimeter groß ist”, erzählt Tobias Bonhoeffer, in dessen Abteilung die Untersuchungen stattfanden.

Die Wissenschaftler fanden heraus, dass beim Synapsenwachstum die verschiedenen Proteinstrukturen immer im passenden Verhältnis zueinander wuchsen. Wuchs oder vermehrte sich nur eine Strukturkomponente allein, oder im falschen Verhältnis zu den anderen, so kollabierten diese Veränderung bald darauf wieder. Mit solch unvollständigen Änderungen können Synapsen keine langfristigen Erinnerungen speichern.

Die Ergebnisse zeigen, dass es eine fein aufeinander abgestimmte Ordnung und Interaktion der Synapsenkomponenten gibt. „In solch einem System sollte es gut möglich sein, individuelle Proteine auszutauschen, während der Rest der Struktur die Stellung hält”, so Scheuss. Bricht jedoch eine ganze Komponentengruppe weg, so wird die ganze Synapse destabilisiert. Auch das ist ein wichtiger Vorgang, denn ohne die Möglichkeit zu vergessen könnte das Gehirn nicht richtig funktionieren. Die Ergebnisse liefern somit nicht nur einen wichtigen Einblick in die Funktion und den Aufbau von Synapsen. Sie dienen auch als Grundlage um Gedächtnisverlust zum Beispiel bei degenerativen Erkrankungen besser zu verstehen.

Ansprechpartner 

Dr. Stefanie Merker

Max-Planck-Institut für Neurobiologie, Martinsried

Telefon: +49 89 8578-3514

 

Prof. Dr. Tobias Bonhoeffer

Max-Planck-Institut für Neurobiologie, Martinsried

Telefon: +49 89 8578-3751
Fax: +49 89 8578-2481

 

Originalpublikation

 
Daniel Meyer, Tobias Bonhoeffer, Volker Scheuss
Balance and stability of synaptic structures during synaptic plasticity
Neuron, 16 April 2014

Dr. Stefanie Merker | Max-Planck-Institut

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Viren ihren Lebenszyklus mit begrenzten Mitteln effektiv sicherstellen
20.02.2017 | Universität zu Lübeck

nachricht Zellstoffwechsel begünstigt Tumorwachstum
20.02.2017 | Veterinärmedizinische Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovative Antikörper für die Tumortherapie

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig von diesen teuren Medikamenten profitieren, wird intensiv an deren Verbesserung gearbeitet. Forschern um Prof. Thomas Valerius an der Christian Albrechts Universität Kiel gelang es nun, innovative Antikörper mit verbesserter Wirkung zu entwickeln.

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig...

Im Focus: Durchbruch mit einer Kette aus Goldatomen

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des Wärmetransportes

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: Hoch wirksamer Malaria-Impfstoff erfolgreich getestet

Tübinger Wissenschaftler erreichen Impfschutz von bis zu 100 Prozent – Lebendimpfstoff unter kontrollierten Bedingungen eingesetzt

Tübinger Wissenschaftler erreichen Impfschutz von bis zu 100 Prozent – Lebendimpfstoff unter kontrollierten Bedingungen eingesetzt

Im Focus: Sensoren mit Adlerblick

Stuttgarter Forscher stellen extrem leistungsfähiges Linsensystem her

Adleraugen sind extrem scharf und sehen sowohl nach vorne, als auch zur Seite gut – Eigenschaften, die man auch beim autonomen Fahren gerne hätte. Physiker der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Welt der keramischen Werkstoffe - 4. März 2017

20.02.2017 | Veranstaltungen

Schwerstverletzungen verstehen und heilen

20.02.2017 | Veranstaltungen

ANIM in Wien mit 1.330 Teilnehmern gestartet

17.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Innovative Antikörper für die Tumortherapie

20.02.2017 | Medizin Gesundheit

Multikristalline Siliciumsolarzelle mit 21,9 % Wirkungsgrad – Weltrekord zurück am Fraunhofer ISE

20.02.2017 | Energie und Elektrotechnik

Wie Viren ihren Lebenszyklus mit begrenzten Mitteln effektiv sicherstellen

20.02.2017 | Biowissenschaften Chemie