Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Symbiotische Meeresbakterien liefern Stickstoffdünger

24.10.2016

Bakterien, die als symbiotische Untermieter in Meerestieren leben, könnten das Wachstum ihrer Gastgeber in bisher ungeahnter Weise beflügeln. Wissenschaftler haben nun herausgefunden, dass diese chemosynthetischen Bakterien nicht nur Kohlenstoff, sondern auch Stickstoff fixieren können.

Chemosynthetische Symbionten sind Bakterien, die auf der Oberfläche oder im Inneren von Tieren leben und ihren Wirt mit Nahrung versorgen, zu der er sonst keinen Zugang hätte. Seit langem ist bekannt, dass diese Bakterien Kohlenstoff fixieren und in organischen Kohlenstoff umwandeln können.


Taucher sammelten Proben der Mondmuscheln und Fadenwürmer beispielsweise an der Küste der Insel Elba in Italien, um anschließend ihre symbiotischen Mitbewohner genauer unter die Lupe zu nehmen.

Ulisse Cardini

Doch nun haben die Mikrobiologin Jillian Petersen und ihre Kollegen von der Universität Wien und dem Max-Planck-Institut für Marine Mikrobiologie entdeckt, dass das auch mit Stickstoff möglich ist. Chemosynthetische Bakterien wandeln reaktionsträgen gasförmigen Stickstoff in eine Form um, die auch andere Lebewesen gut nutzen können. Sie düngen damit einen Lebensraum, in dem das Wachstum häufig durch einen Mangel an verfügbarem Stickstoff begrenzt wird.

Petersen und ihre Kollegen entdeckten die stickstofffixierenden Symbionten als Untermieter von Mondmuscheln und Fadenwürmern. Vertreter dieser Gruppen leben in Küstengewässern auf der ganzen Welt. In manchen Regionen gelten die Muscheln sogar als Delikatesse. Die Chemosynthese ist die besondere Fähigkeit der Bakterien, ganz ohne Sonnenlicht und nur aus chemischer Energie Biomasse zu erzeugen. Diese symbiotische Primärproduktion ist effizient genug, um sowohl das Bakterium als auch seinen Wirt zu ernähren.

Neu: Stickstofffixierung bei chemosynthetischen Symbionten

Die Forscher um Petersen nutzten modernste Methoden zur DNA-Sequenzierung und fanden tatsächlich all jene Gene, die zur Stickstofffixierung nötig sind, in den Symbionten der Muscheln und Würmer. Sie sind damit die ersten bekannten chemosynthetischen Symbionten, die Stickstoff fixieren können. “Diese Entdeckung kam wirklich überraschend - denn die Bakterien können vermutlich auch Stickstoff aus ihrer Umgebung aufnehmen und den Stickstoffabfall ihrer Wirte wiederverwerten“, sagt Petersen.

„Sie müssten ihn also gar nicht aufwändig aus Stickstoffgas fixieren.“ Daher untersuchten die Forscher die Muscheln auch mit Hilfe der sogenannten Transkriptomik und Proteomik – und entdeckten auch die Expression der Gene für die Stickstofffixierung . sie sind also nicht nur vorhanden, sondern werden auch genutzt. “Das deutet darauf hin, dass die Symbionten aktiv im Inneren ihrer Wirte Stickstoff fixieren“, erklärt Petersen. Und auch die Isotopenzusammensetzung des Stickstoffs zeigt, dass es sich um biologisch fixierten Stickstoff handelt und untermauert somit die Vermutung, dass die Symbionten aktiv Stickstoff fixieren.

Jillian Petersen, die jetzt eine Forschungsgruppe an der Universität Wien leitet und davor am Max-Planck-Institut für Marine Mikrobiologie forschte, leitete die Gruppe von Wissenschaftler, die hinter dieser Veröffentlichung steht. Neben den Forschern aus Wien und Bremen waren auch die Universität Montpellier, Frankreich, die Universität Calgary, Kanada, und das Hydra-Institut in Italien beteiligt. „Den Großteil unserer Feldarbeit haben wir am Hydra-Institut in Elba durchgeführt“, so Ulisse Cardini, Wissenschaftler in Petersens Team und erfahrener Forschungstaucher, der viele Proben selbst an Land holte.

‘‘Zudem durften wir Proben von Nicolas Higgs vom Plymouth University Marine Institute und von John Taylor vom Natural History Museum in London nutzen. So konnten wir diese Gene für die Stickstofffixierung in Muscheln aus verschiedensten Regionen auf der ganzen Welt untersuchen – und fanden sie fast überall! Die Fähigkeit, Stickstoff zu fixieren, scheint in diesen symbiotischen Bakterien also weit verbreitet zu sein“, erläutert Cardini.

Dünger für das Meer?

„Die Wissenschaft hat die Stickstofffixierung durch chemosynthetische Symbionten lange Zeit völlig übersehen“, sagt Petersen. „In den späten 1970ern wurden diese Organismen in der Tiefsee entdeckt. Seitdem haben wir uns fast vier Jahrzehnte damit beschäftigt, wie die Symbionten ihren Wirten Kohlenstoff beispielsweise in Form von Zuckern bereitstellen.“ Aber auch Muscheln leben nicht vom Kohlenstoff allein. Die nun vorliegenden Ergebnisse zeigen, dass die Symbionten einen weiteren, unerwarteten Vorteil bringen könnten. Sie peppen den Speiseplan mit Stickstoff auf. Zudem könnten sie auch ihre Umgebung düngen, indem sie verfügbaren Stickstoff freisetzen. „Dieser Frage wollen wir als nächstes nachforschen“, so Petersen: „Helfen diese symbiotischen Bakterien auch, den Ozean zu düngen?“

HINTERGRUNDINFORMATION

Stickstoff ist für alle Organismen lebenswichtig. Er wird benötigt, um unverzichtbare Zellbestandteile wie Proteine und DNS herzustellen. Auf der Erde gibt es reichlich Stickstoff, hauptsächlich in Form von Stickstoffgas. Die meisten Lebewesen jedoch können ihn in dieser Form nicht nutzen. So kommt es, dass Pflanzen, Tiere und Mikroben umgeben von Stickstoff trotzdem an einem Stickstoffmangel sterben können.

Die biologische Stickstofffixierung ist ein Prozess, bei dem das reaktionsträge Stickstoffgas in eine biologisch nützliche Form umgewandelt wird. Dieser Prozess ist die Voraussetzung für eine fortgesetzte Primärproduktion, das Auffüllen der Nährstoffreserven und schließlich für das Überleben vielfältiger Lebensgemeinschaften an Land und im Meer. Die biologische Stickstofffixierung kann nur von einer spezialisierten Gruppe von Mikroorganismen, den sogenannten Diazotrophen, durchgeführt werden. Durch eine Umwandlung des Stickstoffgases in beispielsweise Ammonium stellen sie den Lebewesen in ihrer Umgebung nutzbaren Stickstoff zur Verfügung. Sie sind sozusagen winzig kleine Fabriken, in denen der Stickstoffdünger hergestellt wird, der unsere Ökosysteme am Laufen hält.

An Land, wie insbesondere Landwirten bewusst ist, begrenzt Stickstoffmangel oft das Wachstum von Nutzpflanzen. Eine verbreitete Lösung dieses Problems sind chemische Düngemittel, von denen Jahr für Jahr Millionen von Tonnen ausgebracht werden. Alternativ wird auch seit Tausenden von Jahren eine Wechselwirtschaft betrieben, bei der andere Nutzpflanzen abwechselnd mit Hülsenfrüchten angebaut werden. Denn Hülsenfrüchte haben ein eingebautes biologisches Düngesystem: symbiotische Bakterien, die Knöllchen an den Wurzeln der Pflanzen bilden und Stickstoff fixieren, und dadurch ihren Wirt und die umgebende Erde mit diesem unverzichtbaren Nährstoff versorgen. Neue Forschungen zeigen nun, dass manche Meeresbewohner im Laufe der Evolution scheinbar ein ähnliches System entwickelten, um ihr Stickstoffproblem zu lösen. Und auch dieses System könnte die umgebenden Pflanzen gleich mitdüngen.

Weitere Informationen:

http://www.mpi-bremen.de

Dr. Fanni Aspetsberger | Max-Planck-Institut für marine Mikrobiologie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Sehen, hören und fühlen in der Nanowelt
20.11.2017 | Technische Universität Chemnitz

nachricht Wirkstoff hilft „Mondschein-Zellen“ bei DNA-Reparatur
20.11.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

VDI-Expertenforum „Gefährdungsanalyse Trinkwasser"

20.11.2017 | Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Anwender-Workshops „Laserbearbeitung von Faserverbundwerkstoffen“

20.11.2017 | Seminare Workshops

Hand aufs Herz - was wissen wir über herzgesunde Lebensmittel?

20.11.2017 | Unternehmensmeldung

Transparente Beschichtung für Alltagsanwendungen

20.11.2017 | Materialwissenschaften