Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Supraleitung: Widerstandslos bei Rekordtemperaturen

18.08.2015

Schwefelwasserstoff verliert seinen elektrischen Widerstand unter Hochdruck bei minus 70 Grad Celsius

Bei so hohen Temperaturen hat bislang noch kein Material Strom ohne Widerstand geleitet: Forscher des Mainzer Max-Planck-Instituts für Chemie und der Johannes Gutenberg-Universität Mainz beobachteten, dass Schwefelwasserstoff bei minus 70 Grad Celsius supraleitend wird – wenn sie die Substanz einem Druck von 1,5 Millionen Bar aussetzen.


Erstaunlich handlich ist die Apparatur, mit der extrem hohe Drücke erzeugt werden. Mit Inbus-Schrauben pressen die Forscher die metallene Zelle zusammen. Den Hochdruck halten nur Diamenten aus.

Thomas Hartmann

Das entspricht der Hälfte des Drucks im Inneren der Erde. Mit ihren Hochdruck-Experimenten haben die Mainzer Forscher nicht nur einen Rekord für die Hochtemperatur-Supraleitung aufgestellt, sie weisen mit ihren Erkenntnissen auch einen neuen Weg, auf dem sich möglicherweise Strom bei Raumtemperatur verlustfrei transportieren lässt.

Alltagstaugliche Supraleiter sind noch ein Traum vieler Festkörperphysiker. Bislang sind nur Materialien bekannt, die Strom bei sehr tiefen Temperaturen ohne elektrischen Widerstand und mithin verlustfrei leiten. So besetzten in puncto Sprungtemperatur – das ist die Temperatur, bei der ein Material seinen Widerstand verliert – bisher spezielle Kupferkeramiken, sogenannte Kuprate, die vorderen Plätze.

Der Rekord einer solchen Keramik liegt bei etwa minus 140 Grad Celsius unter normalem Luftdruck und minus 109 Grad Celsius unter hohem Druck. In den Keramiken tritt dabei eine spezielle, unkonventionelle Form der Supraleitung auf. Um die konventionelle Supraleitung zu erreichen, waren bisher sogar mindestens minus 234 Grad Celsius nötig.

Ein Team um Mikhael Eremets, Leiter einer Arbeitsgruppe am Max-Planck-Institut für Chemie, hat in Zusammenarbeit mit Forschern der Johannes Gutenberg-Universität Mainz die konventionelle Supraleitung jetzt bei minus 70 Grad Celsius beobachtet, und zwar in herkömmlichem Schwefelwasserstoff (H2S).

Um den Widerstand der unter normalen Bedingungen gasförmigen Substanz zu brechen, mussten die Wissenschaftler sie jedoch einem Druck von 1,5 Megabar, also 1,5 Millionen Bar aussetzen, wie sie in der neuesten Ausgabe des Wissenschaftsmagazins Nature erläutern.

Die Sprungtemperatur konventioneller Supraleitung kennt keine Grenze

„Mit unseren Experimenten haben wir einen neuen Rekord für die Temperatur aufgestellt, bei der ein Material supraleitend wird“, sagt Mikhael Eremets. Außerdem hat sein Team erstmals experimentell nachgewiesen, dass es konventionelle Supraleiter mit hoher Sprungtemperatur gibt. Theoretische Berechnungen hatten das unter anderem für H2S bereits vorhergesagt.

„Es ist vielversprechend, nach anderen Materialien zu suchen, in denen konventionelle Supraleitung bei hohen Temperaturen auftritt“, sagt der Physiker. „Denn für die Sprungtemperatur konventioneller Supraleiter gibt es theoretisch keine Grenze, und unsere Experimente lassen hoffen, dass es sogar bei Raumtemperatur Supraleitung gibt.“

Den extrem hohen Druck, der nötig ist, um H2S bei vergleichsweise moderaten Minusgraden supraleitend zu machen, erzeugten die Forscher in einer speziellen Druckkammer, die weniger als ein Kubikzentimeter groß ist. Durch zwei seitliche Diamantenspitzen, die wie Ambosse wirken, können sie den Druck auf die Probe stetig erhöhen. Die Zelle ist mit Kontakten versehen, um den elektrischen Widerstand der Probe zu messen. In einer anderen Hochdruckzelle können die Forscher zudem die magnetischen Eigenschaften eines Materials untersuchen, die sich bei der Sprungtemperatur ebenfalls ändern.

Nachdem die Forscher flüssigen Schwefelwasserstoff in eine solche Druckkammer gefüllt hatten, erhöhten sie den Druck auf die Probe schrittweise von etwa einem auf zwei Megabar und veränderten für jeden Druck auch die Temperatur. Dabei ermittelten sie in Messungen sowohl des Widerstands als auch der Magnetisierung die Sprungtemperatur des Materials. Die Messungen der Magnetisierung sind dabei aussagekräftiger, weil ein Supraleiter ideale magnetische Eigenschaften besitzt.

Wasserstoffatome begünstigen Supraleitung bei hoher Temperatur

Dass Schwefelwasserstoff unter hohem Druck seinen elektrischen Widerstand schon bei relativ hohen Temperaturen verliert, führen die Wissenschaftler vor allem auf eine Eigenschaft des Wasserstoffs zurück: Wasserstoffatome schwingen im Kristallgitter mit der höchsten Frequenz aller Elemente, weil Wasserstoff am leichtesten ist.

Da die Schwingungen des Kristallgitters die konventionelle Supraleitung vermitteln – und zwar desto effektiver, je schneller die Atome schwingen –, weisen Materialien mit viel Wasserstoff eine relativ hohe Sprungtemperatur auf. Außerdem treiben starke Bindungen zwischen den Atomen die Temperatur in die Höhe, bei der ein Material supraleitend wird. Beide Bedingungen sind in H3S erfüllt, und genau diese Verbindung bildet sich unter Hochdruck aus H2S.

Nun suchen Mikhael Eremets und sein Team nach Materialien mit noch höheren Sprungtemperaturen. Den Druck auf Schwefelwasserstoff über 1,5 Megabar hinaus zu erhöhen, hilft dabei nicht. Das haben theoretische Physiker nicht nur berechnet, das Mainzer Team hat dies nun auch experimentell bestätigt. Bei noch höherem Druck verändert sich das Gefüge der Elektronen nämlich so, dass die Sprungtemperatur wieder langsam sinkt.

Gesucht: wasserstoffreiche Materialien mit höherer Sprungtemperatur

„Ein offensichtlicher Kandidat für eine hohe Sprungtemperatur ist reiner Wasserstoff“, sagt Mikhael Eremets. „Man erwartet, dass er unter hohem Druck schon bei Raumtemperatur supraleitend wird.“ Mit ihm experimentiert sein Team bereits, doch die Versuche sind sehr schwierig, weil dafür Drücke von drei bis vier Megabar nötig sind.

„Unsere Untersuchung an Schwefelwasserstoff zeigt aber, dass viele wasserstoffreiche Materialien eine hohe Sprungtemperatur besitzen können“, so Eremets. Dabei ist es vielleicht auch ohne Hochdruck möglich, einen Hochtemperatur-Supraleiter zu finden, der diesen Namen auch gemessen am alltäglichen Temperaturgefühl verdient. Derzeit brauchen die Mainzer Forscher den hohen Druck, um Materialien, die wie Schwefelwasserstoff elektrisch isolierend wirken, in Metalle zu verwandeln. „Möglicherweise gibt es Polymere oder andere wasserstoffreiche Verbindungen, die sich auf andere Weise metallisch machen lassen und bei Raumtemperatur supraleitend werden“, sagt der Physiker. Ließen sich solche Materialien finden, gäbe es sie endlich: Supraleiter, die für eine breite technische Anwendung brauchbar sind.
SB/PH

Original Publikation:
Conventional superconductivity at 203 K at high pressures
Alexander Drozdov, Mikhail Eremets, Ivan Troyan, Vadim Ksenofontov, Sergii Shylin Nature, 17. August 2015

Weitere Informationen:

http://www.mpic.de/aktuelles/pressemeldungen/news/supraleitung-widerstandslos-be...

Dr. Susanne Benner | Max-Planck-Institut für Chemie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen
23.05.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

nachricht Mikro-Lieferservice für Dünger
23.05.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium 2017: Internet of Production für agile Unternehmen

23.05.2017 | Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen

23.05.2017 | Biowissenschaften Chemie

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungsnachrichten

CAST-Projekt setzt Dunkler Materie neue Grenzen

23.05.2017 | Physik Astronomie