Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Supraleitung: Widerstandslos bei Rekordtemperaturen

18.08.2015

Schwefelwasserstoff verliert seinen elektrischen Widerstand unter Hochdruck bei minus 70 Grad Celsius

Bei so hohen Temperaturen hat bislang noch kein Material Strom ohne Widerstand geleitet: Forscher des Mainzer Max-Planck-Instituts für Chemie und der Johannes Gutenberg-Universität Mainz beobachteten, dass Schwefelwasserstoff bei minus 70 Grad Celsius supraleitend wird – wenn sie die Substanz einem Druck von 1,5 Millionen Bar aussetzen.


Erstaunlich handlich ist die Apparatur, mit der extrem hohe Drücke erzeugt werden. Mit Inbus-Schrauben pressen die Forscher die metallene Zelle zusammen. Den Hochdruck halten nur Diamenten aus.

Thomas Hartmann

Das entspricht der Hälfte des Drucks im Inneren der Erde. Mit ihren Hochdruck-Experimenten haben die Mainzer Forscher nicht nur einen Rekord für die Hochtemperatur-Supraleitung aufgestellt, sie weisen mit ihren Erkenntnissen auch einen neuen Weg, auf dem sich möglicherweise Strom bei Raumtemperatur verlustfrei transportieren lässt.

Alltagstaugliche Supraleiter sind noch ein Traum vieler Festkörperphysiker. Bislang sind nur Materialien bekannt, die Strom bei sehr tiefen Temperaturen ohne elektrischen Widerstand und mithin verlustfrei leiten. So besetzten in puncto Sprungtemperatur – das ist die Temperatur, bei der ein Material seinen Widerstand verliert – bisher spezielle Kupferkeramiken, sogenannte Kuprate, die vorderen Plätze.

Der Rekord einer solchen Keramik liegt bei etwa minus 140 Grad Celsius unter normalem Luftdruck und minus 109 Grad Celsius unter hohem Druck. In den Keramiken tritt dabei eine spezielle, unkonventionelle Form der Supraleitung auf. Um die konventionelle Supraleitung zu erreichen, waren bisher sogar mindestens minus 234 Grad Celsius nötig.

Ein Team um Mikhael Eremets, Leiter einer Arbeitsgruppe am Max-Planck-Institut für Chemie, hat in Zusammenarbeit mit Forschern der Johannes Gutenberg-Universität Mainz die konventionelle Supraleitung jetzt bei minus 70 Grad Celsius beobachtet, und zwar in herkömmlichem Schwefelwasserstoff (H2S).

Um den Widerstand der unter normalen Bedingungen gasförmigen Substanz zu brechen, mussten die Wissenschaftler sie jedoch einem Druck von 1,5 Megabar, also 1,5 Millionen Bar aussetzen, wie sie in der neuesten Ausgabe des Wissenschaftsmagazins Nature erläutern.

Die Sprungtemperatur konventioneller Supraleitung kennt keine Grenze

„Mit unseren Experimenten haben wir einen neuen Rekord für die Temperatur aufgestellt, bei der ein Material supraleitend wird“, sagt Mikhael Eremets. Außerdem hat sein Team erstmals experimentell nachgewiesen, dass es konventionelle Supraleiter mit hoher Sprungtemperatur gibt. Theoretische Berechnungen hatten das unter anderem für H2S bereits vorhergesagt.

„Es ist vielversprechend, nach anderen Materialien zu suchen, in denen konventionelle Supraleitung bei hohen Temperaturen auftritt“, sagt der Physiker. „Denn für die Sprungtemperatur konventioneller Supraleiter gibt es theoretisch keine Grenze, und unsere Experimente lassen hoffen, dass es sogar bei Raumtemperatur Supraleitung gibt.“

Den extrem hohen Druck, der nötig ist, um H2S bei vergleichsweise moderaten Minusgraden supraleitend zu machen, erzeugten die Forscher in einer speziellen Druckkammer, die weniger als ein Kubikzentimeter groß ist. Durch zwei seitliche Diamantenspitzen, die wie Ambosse wirken, können sie den Druck auf die Probe stetig erhöhen. Die Zelle ist mit Kontakten versehen, um den elektrischen Widerstand der Probe zu messen. In einer anderen Hochdruckzelle können die Forscher zudem die magnetischen Eigenschaften eines Materials untersuchen, die sich bei der Sprungtemperatur ebenfalls ändern.

Nachdem die Forscher flüssigen Schwefelwasserstoff in eine solche Druckkammer gefüllt hatten, erhöhten sie den Druck auf die Probe schrittweise von etwa einem auf zwei Megabar und veränderten für jeden Druck auch die Temperatur. Dabei ermittelten sie in Messungen sowohl des Widerstands als auch der Magnetisierung die Sprungtemperatur des Materials. Die Messungen der Magnetisierung sind dabei aussagekräftiger, weil ein Supraleiter ideale magnetische Eigenschaften besitzt.

Wasserstoffatome begünstigen Supraleitung bei hoher Temperatur

Dass Schwefelwasserstoff unter hohem Druck seinen elektrischen Widerstand schon bei relativ hohen Temperaturen verliert, führen die Wissenschaftler vor allem auf eine Eigenschaft des Wasserstoffs zurück: Wasserstoffatome schwingen im Kristallgitter mit der höchsten Frequenz aller Elemente, weil Wasserstoff am leichtesten ist.

Da die Schwingungen des Kristallgitters die konventionelle Supraleitung vermitteln – und zwar desto effektiver, je schneller die Atome schwingen –, weisen Materialien mit viel Wasserstoff eine relativ hohe Sprungtemperatur auf. Außerdem treiben starke Bindungen zwischen den Atomen die Temperatur in die Höhe, bei der ein Material supraleitend wird. Beide Bedingungen sind in H3S erfüllt, und genau diese Verbindung bildet sich unter Hochdruck aus H2S.

Nun suchen Mikhael Eremets und sein Team nach Materialien mit noch höheren Sprungtemperaturen. Den Druck auf Schwefelwasserstoff über 1,5 Megabar hinaus zu erhöhen, hilft dabei nicht. Das haben theoretische Physiker nicht nur berechnet, das Mainzer Team hat dies nun auch experimentell bestätigt. Bei noch höherem Druck verändert sich das Gefüge der Elektronen nämlich so, dass die Sprungtemperatur wieder langsam sinkt.

Gesucht: wasserstoffreiche Materialien mit höherer Sprungtemperatur

„Ein offensichtlicher Kandidat für eine hohe Sprungtemperatur ist reiner Wasserstoff“, sagt Mikhael Eremets. „Man erwartet, dass er unter hohem Druck schon bei Raumtemperatur supraleitend wird.“ Mit ihm experimentiert sein Team bereits, doch die Versuche sind sehr schwierig, weil dafür Drücke von drei bis vier Megabar nötig sind.

„Unsere Untersuchung an Schwefelwasserstoff zeigt aber, dass viele wasserstoffreiche Materialien eine hohe Sprungtemperatur besitzen können“, so Eremets. Dabei ist es vielleicht auch ohne Hochdruck möglich, einen Hochtemperatur-Supraleiter zu finden, der diesen Namen auch gemessen am alltäglichen Temperaturgefühl verdient. Derzeit brauchen die Mainzer Forscher den hohen Druck, um Materialien, die wie Schwefelwasserstoff elektrisch isolierend wirken, in Metalle zu verwandeln. „Möglicherweise gibt es Polymere oder andere wasserstoffreiche Verbindungen, die sich auf andere Weise metallisch machen lassen und bei Raumtemperatur supraleitend werden“, sagt der Physiker. Ließen sich solche Materialien finden, gäbe es sie endlich: Supraleiter, die für eine breite technische Anwendung brauchbar sind.
SB/PH

Original Publikation:
Conventional superconductivity at 203 K at high pressures
Alexander Drozdov, Mikhail Eremets, Ivan Troyan, Vadim Ksenofontov, Sergii Shylin Nature, 17. August 2015

Weitere Informationen:

http://www.mpic.de/aktuelles/pressemeldungen/news/supraleitung-widerstandslos-be...

Dr. Susanne Benner | Max-Planck-Institut für Chemie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscher finden Hinweise auf verknotete Chromosomen im Erbgut
20.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Aus der Moosfabrik
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

Die jungen forschungsstarken Unis Europas tagen in Ulm - YERUN Tagung in Ulm

19.10.2017 | Veranstaltungen

Bauphysiktagung der TU Kaiserslautern befasst sich mit energieeffizienten Gebäuden

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher finden Hinweise auf verknotete Chromosomen im Erbgut

20.10.2017 | Biowissenschaften Chemie

Saugmaschinen machen Waschwässer von Binnenschiffen sauberer

20.10.2017 | Ökologie Umwelt- Naturschutz

Strukturbiologieforschung in Berlin: DFG bewilligt Mittel für neue Hochleistungsmikroskope

20.10.2017 | Förderungen Preise