Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Suche nach dem Schlüssel für den mRNP-Code

27.03.2015

18 neue Schwerpunktprogramme hat die Deutsche Forschungsgemeinschaft (DFG) vor Kurzem genehmigt; eines davon wird von Wissenschaftlern der Universitäten Würzburg und Köln koordiniert. Sein Ziel: Ungelöste Fragen bei der Umwandlung der Information eines Gens in ein Protein zu beantworten.

Im Prinzip klingt die Angelegenheit einfach: Jedes Gen kodiert ein Protein. Um die Information aus dem Zellkern, wo die DNA liegt, in das Zellplasma zu transportieren, wo die Proteine synthetisiert werden, kommt ein „Bote“ zum Einsatz – die sogenannte messenger-RNA, kurz mRNA. Sie bildet quasi eine Abschrift des jeweiligen Gens und liefert den Bauplan für das benötigte Protein.

In der Realität ist dieser Prozess weitaus komplizierter: „Die mRNA liegt niemals nackt vor, sondern ist mit einer Vielzahl von Proteinen bedeckt, die selbst bestimmte Funktionen übernehmen“, erklärt Professor Utz Fischer.

Rund 1.000 solcher Proteine sind nach Fischers Worten heute bekannt. Sie können sich in unterschiedlichen Kombinationen dem mRNA-Strang anheften und damit ein „unglaublich komplexes Netzwerk“ bilden. mRNP, oder messenger-Ribonukleoproteine heißen diese Verbindungen aus mRNA und assoziierten Proteinen.

105 Millionen Euro für 18 Schwerpunktprogramme

Utz Fischer hat an der Universität Würzburg den Lehrstuhl für Biochemie inne. Gemeinsam mit seinem Kollegen, dem Privatdozenten Niels H. Gehring von der Universität Köln, hat er bei der DFG den Antrag eingereicht, ein neues Schwerpunktprogramm einzurichten, das dieses Netzwerk unter die Lupe nehmen soll. Mit Erfolg: Unter den 18 neuen Programmen, die die DFG jetzt genehmigt hat, sind Fischer und Gehring dabei. Sie koordinieren das Vorhaben: „Deciphering the mRNP code: RNA-bound Determinants of Post-transcriptional Gene Regulation”.

Schwerpunktprogramme dienen laut Aussage der DFG dazu, „grundlegende wissenschaftliche Fragestellungen in besonders aktuellen oder sich gerade bildenden Forschungsgebieten“ zu untersuchen. Das Interesse daran ist groß: Unter 87 Konzepten mussten die DFG-Gremien diesmal eine Auswahl treffen; nur 18 – also gerade mal 20 Prozent – waren erfolgreich. Für sie stehen in einer ersten Förderperiode in den kommenden drei Jahren insgesamt rund 105 Millionen Euro zur Verfügung; rund sechs Millionen Euro davon gehen an das Programm, das Fischer und Gehring koordinieren werden. In der Regel werden die Schwerpunktprogramme sechs Jahre gefördert.

Wie Proteine untereinander kommunizieren

„Wenn von einem Gen eine Abschrift in Form einer mRNA gemacht wird, heißt das noch lange nicht, dass es anschließend auch zur Synthese des jeweiligen Proteins kommt“, erklärt Utz Fischer. Tatsächlich entscheiden die anhaftenden Proteine darüber, wann die mRNA zum Einsatz kommt, in welcher Menge Proteine produziert werden, wie lange der Strang arbeitet und wo er aktiv wird. Sie sind damit im Wesentlichen dafür verantwortlich, dass Zellen schnell in der Lage sind, auf veränderte Umweltbedingungen zu reagieren, beispielsweise überraschend im Krankheitsfall oder ganz regulär während der Entwicklung des Organismus.

Dafür müssen diese Proteine auch untereinander kommunizieren. Dass sie das tun, ist bekannt; wie diese Kommunikation allerdings im Detail abläuft, ist noch weitestgehend unklar. Dass dieser Prozess einer gewissen Dynamik unterliegt, verkompliziert die Erforschung zusätzlich: „Der mRNP-Code ändert sich dramatisch im Laufe des Lebens der mRNA“, so Fischer. Damit ist er allerdings auch anfällig für Fehler, was medizinisch relevant sein kann. „Defekte in Abschnitten von mRNA, aber auch in Proteinen, die mit ihr wechselwirken, sind häufige Ursache vieler verschiedener Krankheiten des Menschen“, sagt Fischer. Bekannte Beispiele dafür sind neurologische Störungen wie Schizophrenie oder das Fragile X-Syndrom.

Die Bekanntgabe der neuen Schwerpunktprogramme markiert gleichzeitig den Start eines neuen Auswahlverfahrens. Denn bislang steht noch nicht fest, wer gemeinsam mit Fischer und Gehring versuchen wird, das komplexe Netzwerk von Proteinen und mRNA-Strängen zu entflechten. Wissenschaftler aus ganz Deutschland haben in den kommenden Monaten die Möglichkeit, Förderanträge an die DFG zu richten. Diese werden anschließend „in einem strengen Begutachtungsverfahren auf ihre wissenschaftliche Qualität und ihren Beitrag zum jeweiligen Hauptthema geprüft“, wie die DFG mitteilt. Erst Ende dieses Jahres werden Fischer und Gehring also genau wissen, wie viele Gruppen und Projekte sie tatsächlich koordinieren werden. Fischer rechnet mit 15 bis 20 Forscher-Teams aus unterschiedlichen Fachgebieten – angefangen bei der Biologie über Strukturbiologie und Biochemie bis zur Bioinformatik.

Moderne Technik produziert gewaltige Datenmengen

Diese sollen sich dann auch mit einem weiteren ungelösten Rätsel rund um den mRNP-Code beschäftigen: Unter den etwa 1.000 bislang bekannten Proteinen, die sich dem mRNA-Strang anlagern, finden sich zahlreiche Enzyme, die sich bisher damit noch nicht in Verbindung bringen ließen. „Es ist unklar, weshalb sie mit der mRNA interagieren und vor allen Dingen, was sie mit dieser machen. Hier erwarten wir noch so manche Überraschung“, so der Biochemiker.

Sechs Jahre werden nach Aussage der Wissenschaftler wohl nicht ausreichen, um den mRNP-Code in allen Details zu entschlüsseln. Dennoch ist Fischer sicher, dass es gelingen wird, „ein gutes Stück weiterzukommen“. Dazu trage auch die schnell voranschreitende Entwicklung neuer Technologien bei. Mit Hilfe beispielsweise des next generation sequencing und Analysen im Großdurchsatz sei die Wissenschaft inzwischen in der Lage, innerhalb kurzer Zeit gewaltige Mengen an Daten zu produzieren, die anschließend von Bioinformatikern aufgearbeitet werden können.

„Wenn wir in der Lage sind, den mRNP-Code zu verstehen, wird das unser Wissen über die Regulation der Genexpression vervollständigen“: Davon ist Utz Fischer überzeugt. Gleichzeitig werde dieses Wissen einen bedeutenden Einfluss auf die biomedizinische Forschung haben. Von der Tatsache, dass es sich dabei um ein äußerst komplexes Problem handelt, müsse man sich seiner Meinung nach nicht abhalten lassen. „Vielleicht ist es unter dem Strich ja simpler als man denkt.“

Kontakt

Prof. Dr. Utz Fischer, Lehrstuhl für Biochemie, T: (0931) 31-84029, utz.fischer@biozentrum.uni-wuerzburg.de

Gunnar Bartsch | Julius-Maximilians-Universität Würzburg
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Sollbruchstellen im Rückgrat - Bioabbaubare Polymere durch chemische Gasphasenabscheidung
02.12.2016 | Gesellschaft Deutscher Chemiker e.V.

nachricht "Fingerabdruck" diffuser Protonen entschlüsselt
02.12.2016 | Universität Leipzig

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie