Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Sub-Nanometer-Katalysatoren verhalten sich anders als prognostiziert: Extrapolieren verboten

28.01.2016

Zur Herstellung von Margarine werden jedes Jahr Millionen Tonnen ungesättigter Fettsäuren aus Pflanzenölen mit Wasserstoff umgesetzt. Auf der Suche nach besseren Katalysatoren für solche als Hydrierung bezeichneten Reaktionen machte ein deutsch-amerikanisches Forscherteam eine Entdeckung, die eine seit mehr als 50 Jahren geltende Regel in Frage stellt: Bei Katalysatorpartikeln aus nur wenigen Atomen beeinflussen Form und Größe die Reaktivität sehr viel stärker als bisher gedacht.

Millionen Tonnen Margarine werden jährlich durch die Umsetzung ungesättigter Fettsäuren aus Pflanzenölen mit Wasserstoff hergestellt. Während die Hydrierung von Pflanzenölen mit günstigen Nickel-Katalysatoren gelingt, benötigen viele andere Reaktionen das teure Platin.


Berechnete Struktur eines Pt10-Clusters auf einer Magnesiumoxid-Oberfläche.

Bild: U. Landman, B. Yoon / Georgia Tech


Andrew Crampton und Marian Rötzer an ihrer Vakuum-Anlage zur Herstellung ultrakleiner Katalysatorpartikel

Foto: Andreas Heddergott / TUM

Da die Hydrierungsreaktion nur an der Oberfläche abläuft und die inneren Atome keine Rolle spielen, entwickelt die Industrie immer kleinere Katalysatorpartikel. Die kleinsten von ihnen enthalten inzwischen kaum mehr als 100 Atome. Bei noch kleineren Partikeln übernehmen allerdings quantenphysikalische Effekte die Regie, und die bisherigen Modelle können die Eigenschaften der Platinpartikel nicht mehr vorhersagen.

Ein Team aus Forschern der Technischen Universität München (TUM) und des Georgia Institute of Technology in Atlanta (Georgia) hat diese Effekte nun mit Atom-genauer Präzision untersucht. Als Modell nahmen sie die von Platin katalysierte Reaktion von Ethen zu Ethan. Wie die ungesättigten Fettsäuren enthält Ethen eine Kohlenstoff-Doppelbindung. Nimmt diese zwei Wasserstoffatome auf, wird Ethen zum „gesättigten“ Ethan.

Ein Modell kommt ins Wanken

Seit mehr als 50 Jahren teilen Chemiker katalytische Reaktionen in solche ein, die von der Struktur und Größe des Katalysators beeinflusst werden und solche, auf die diese Faktoren keinen Einfluss haben. „Die Ethenhydrierung galt als typisches Beispiel einer größenunabhängigen Reaktion. Wir vermuteten jedoch, dass diese Unterscheidung für Katalysatorpartikel im Sub-nanometer-Bereich nicht mehr gilt“, sagt Ulrich Heiz, Inhaber des Lehrstuhls für Physikalische Chemie der TU München, Mitglied und Akademischer Direktor des Zentralinstituts für Katalyseforschung.

Die Arbeitsgruppe von Professor Ulrich Heiz produzierte dazu Platinpartikel, die jeweils nur eine kleine Anzahl von Atomen besitzen. „Mit unserer Anlage können wir gezielt Platincluster mit einem bis 80 Platinatomen produzieren“, sagt Andrew Crampton, Mitarbeiter der Arbeitsgruppe Heiz. An diesen ließen sie Ethen und Wasserstoff miteinander reagieren und analysierten die Ergebnisse.

Die Reaktivität hängt dabei sehr stark von der genauen Anzahl an Atomen ab. Cluster mit weniger als zehn Atomen waren kaum aktiv. Ab zehn Atomen wächst die Reaktivität bis zu einem Maximum bei Clustern aus 13 Atomen. Sie besitzen eine deutlich höhere Reaktivität als eine normale Platinoberfläche – ein klarer Beleg dafür, dass die in den letzten Jahrzehnten für diese Reaktion postulierte Größenunabhängigkeit nicht korrekt war.

Untermauert werden die experimentellen Beobachtungen durch die von den amerikanischen Kollegen entwickelten theoretischen Modelle. Sie erlauben nun eine präzise Aussage darüber, welches Atom warum für welche Aktivität verantwortlich ist. „So kleine Cluster verhalten sich nicht mehr wie Metallkörper sondern wie Moleküle: Small is different“, sagt Uzi Landman, Professor am Center for Computational Materials Science des Georgia Institute of Technology. „Die Eigenschaften hängen eindeutig von der Anzahl der Atome ab.“

Ein eingespieltes Ensemble

Wie beim bekannten Tangram-Spiel können sich die Atome der kleinen Cluster zu verschiedenen Formen zusammen finden, sogenannte Isomere. Außerdem spielen bei Clustern mit wenigen Atomen auch die Wechselwirkungen mit den Atomen des Trägermaterials eine wichtige Rolle.

Inzwischen haben die Münchener Chemiker verschiedene Verfahren entwickelt, wie sie die kleinen Platincluster auf Trägermaterialien fixieren können. „Wir verhindern damit, dass sich die kleinen Partikel zu größeren zusammenlagern“, erläutert Ulrich Heiz. „Die Oberfläche wiederum beeinflusst, welche Form die Cluster bevorzugt annehmen. Zusammen mit der Clustergröße haben wir damit ein Instrumentarium, die Eigenschaften für eine bestimmte Reaktion maßzuschneidern.“

Zusammen mit weiteren Mitgliedern des Zentralinstituts für Katalyseforschung wollen die Wissenschaftler in naher Zukunft nasschemische Verfahren entwickeln, mit denen effizient größere Mengen kleiner Platincluster mit einer genau definierten Anzahl von Atomen produziert werden können.

Die Arbeiten wurden unterstützt mit Mitteln des European Research Council (ERC), der Deutschen Forschungsgemeinschaft (DFG), des US Air Force Office for Scientific Research (AFOSR) und des US Department of Energy (DOE).

Publikation:

Structure sensitivity in the nanoscalable regime: catalyzed ethylene hydrogenation on supported Pt nanoclusters; Andrew S. Crampton, Marian D. Rötzer, Claron J. Ridge, Florian F. Schweinberger, Ueli Heiz, Bokwon Yoon, Uzi Landman:
nature communications, 28. Jan 2015, DOI: 10.1038/ncomms10389

Kontakt:

Prof. Dr. Ulrich Heiz
Technische Universität München
Zentralinstitut für Katalyseforschung
Ernst-Otto-Fischer-Str. 1, 85748 Garching, Germany
Tel.: +49 89 289 13390 – E-Mail: ulrich.heiz@mytum.de

Weitere Informationen:

http://www.tum.de/die-tum/aktuelles/pressemitteilungen/kurz/article/32893/
http://www.pc.ch.tum.de
http://www.crc.tum.de

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Dichtes Gefäßnetz reguliert Bildung von Thrombozyten im Knochenmark
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Welcher Scotch ist es?
25.07.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungen

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

IT-Experten entdecken Chancen für den Channel-Markt

25.07.2017 | Unternehmensmeldung

Erst hot dann Schrott! – Elektronik-Überhitzung effektiv vorbeugen

25.07.2017 | Seminare Workshops

Dichtes Gefäßnetz reguliert Bildung von Thrombozyten im Knochenmark

25.07.2017 | Biowissenschaften Chemie