Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Strukturforschung - Molekulare Maschine arbeitet im Dreieck

26.06.2015

LMU-Wissenschaftler haben die Struktur einer molekularen Maschine aufgeklärt und dabei eine ungewöhnliche Dreiecksform entdeckt.

Peroxisomen sind membranumhüllte Zellorganellen, die zahlreiche Stoffwechselprozesse der Zelle durchführen, etwa den Abbau von Fettsäuren und die Entgiftung von schädlichem Wasserstoffperoxid. Die im Peroxisom enthaltenen Enzyme werden in gefaltetem Zustand in die Organelle importiert.


Komplex der ATPasen Pex1 und Pex6. Bild: LMU

„Wie dieser Transport funktioniert, ist noch nicht vollständig geklärt. Bekannt ist, dass die dafür notwendige Arbeit von einer molekularen Maschine verrichtet wird, die aus zwei sogenannten ATPasen besteht“, sagt Dr. Petra Wendler vom Genzentrum der LMU.

Wendlers Team konnte nun in Zusammenarbeit mit der Gruppe von Professor Ralf Erdmann (Ruhr-Universität Bochum) im Hefemodell die Struktur des Komplexes der beiden ATPasen aufklären und durch verschiedene molekulare „Schnappschüsse“ sogar Einblick in dessen Funktionsweise erhalten.

ATPasen sind Enzyme, die ATP – die Energiewährung der Zelle – aufspalten. Dabei wird Energie frei, die zum Beispiel für molekulare Transportprozesse genutzt werden kann. In den Peroxisomen ist ein Komplex der ATPasen Pex1 und Pex6 dafür zuständig, den Transport von Enzymen durch die peroxisomale Membran aufrechtzuerhalten.

Defekte in einer der beiden ATPasen können zu einer stark verminderten Peroxisomenaktivität oder sogar zum Verlust der Organellen führen. Mutationen in Pex1 oder Pex6 sind beim Menschen die häufigste Ursache für das Zellweger-Syndrom, eine seltene aber schwerwiegende unheilbare Erbkrankheit.

„Der Komplex aus Pex1 und Pex6 setzt sich aus sechs Bausteinen zusammen. Wie die ATPasen genau angeordnet sind und wie sie zusammenarbeiten, war bisher allerdings unbekannt“, sagt Wendler. Mittels elektronenmikroskopischer Analysen zeigte Wendlers Team jetzt, dass Pex1 und Pex6 alternierend in einem Ring angeordnet sind, wobei ihre langen sogenannten N-terminalen Domänen asymmetrisch ausgerichtet werden. Insgesamt gleicht der Komplex zur Überraschung der Wissenschaftler von oben betrachtet einem Dreieck.

„Eine vergleichbare Form wurde bei hexameren ATPasen-Ringen bisher noch nie beobachtet“, sagt Wendler. Zusätzlich gelangen den Wissenschaftlern verschiedene molekulare „Schnappschüsse“, die den Komplex in Aktion zeigen.

„Dabei wird deutlich, dass der Komplex unter ATP-Verbrauch eine pumpende Bewegung durchführt, die nahelegt, dass Substrate durch die zentrale Pore in der Mitte des Komplexes gezogen werden“, erklärt Wendler. Als nächsten Schritt wollen die Wissenschaftler die Dynamik des Komplexes in noch besserer Auflösung darstellen und interagierende Proteine untersuchen.

Nature Communications 2015
göd

Publikation
Molecular snapshots of the Pex1/6 AAAþ complex in action
Susanne Ciniawsky, Immanuel Grimm, Delia Saffian, Wolfgang Girzalsky, Ralf Erdmann & Petra Wendler
Nature Communications 2015
http://www.nature.com/ncomms/2015/150612/ncomms8331/abs/ncomms8331.html

Kontakt:
Dr. Petra Wendler
Gene Center Munich
Department of Biochemistry
Phone +49 (0) 89 2180 76928
wendler@genzentrum.lmu.de
http://www.wendler.genzentrum.lmu.de/petra-wendler/

Luise Dirscherl | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-muenchen.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mitochondrien von Krebszellen im Visier
14.12.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Wie die Niere bei Wassermangel hochkonzentrierten Urin herstellt
14.12.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mitochondrien von Krebszellen im Visier

14.12.2017 | Biowissenschaften Chemie

Grazer Forscher stellen Methode zur dreidimensionalen Charakterisierung vulkanischer Wolken vor

14.12.2017 | Geowissenschaften

Leibniz-Preise 2018: DFG zeichnet vier Wissenschaftlerinnen und sieben Wissenschaftler aus

14.12.2017 | Förderungen Preise