Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Strukturforschung - Haarnadel überlistet Immunsystem

18.01.2013
Das angeborene Immunsystem mobilisiert die körpereigene Abwehr gegen eingedrungene Erreger - die sich allerdings mit Tricks dagegen wehren. Eine neue Studie zeigt nun, wie Masernviren mittels einer Haarnadelstruktur die Immunabwehr lahm legen.

Das angeborene Immunsystem ist die erste Verteidigung des Körpers gegen Keime und Fremdstoffe. Dabei werden bestimmte erregertypische Molekülstrukturen von Rezeptoren des angeborenen Immunsystems erkannt.

Zu den potenziell verräterischen Molekülen gehören virale Nukleinsäuren, die unter anderem durch sogenannte zytoplasmatische RIG-I artige Rezeptoren erkannt werden. Einer dieser Rezeptoren ist MDA5, der durch das Ausbilden von Filamenten an der RNA insbesondere lange und vernetzte virale RNA erkennt. RIG-I selbst erkennt eher kürzere virale RNA-Abschnitte.

Allerdings haben Viren Wege gefunden, die angeborene Immunantwort auszutricksen: „Masernviren etwa produzieren ein sogenanntes V-Protein, das als viraler Inhibitor spezifisch an MDA5 und einen weiteren RIG-I artigen Rezeptor bindet und dadurch die Erkennung infizierter Zellen verringert - RIG-I direkt wird allerdings nicht gehemmt“, sagt Professor Karl-Peter Hopfner vom Genzentrum der LMU. Wie verbreitet und vor allem wie virulent ein Virus ist, wird wesentlich von diesem Wettbewerb zwischen viralen und zellulären Proteinen bestimmt.

Haarnadelschleife öffnet Rezeptorprotein

„Wir konnten nun zum ersten Mal einen Komplex aus V-Protein und MDA5 kristallisieren und seine Struktur detailliert aufklären“, berichtet Hopfner. Der tiefe Einblick in die Kristallstruktur ermöglichte es Hopfners Team in Zusammenarbeit mit dem LMU-Virologen Professor Karl-Klaus Conzelmann, die Funktionsweise des V-Proteins aufzuklären: Das Geheimnis liegt in einer Haarnadelschleife, mit der das V-Protein MDA5 teilweise entfaltet. So kann das Protein an einen Abschnitt von MDA5 binden, der normalerweise unzugänglich im Inneren liegt. Dadurch wird verhindert, dass MDA5 Filamente bildet und virale RNA signalisiert.

Dieses Ergebnis war für die Wissenschaftler völlig überraschend und erklärt auch, warum MDA5, aber nicht RIG-I von dem V-Protein erkannt wird: Die Struktur von RIG-I bietet der Haarnadelschleife keinen Angriffspunkt, sodass das Protein nicht entfaltet werden kann. „Unsere Arbeit liefert einen detaillierten Einblick in die Mechanismen, mit denen virale Proteine Wirtsproteine hemmen. Dies eröffnet möglicherweise auch neue Chancen für therapeutische Eingriffe“, schließt Hopfner.
(Science 2013) göd

Publikation:
Paramyxovirus V proteins disrupt the fold of the RNA sensor MDA5 to
inhibit antiviral signaling
Carina Motz, Kerstin Monika Schuhmann, Axel Kirchhofer, Manuela Moldt, Gregor
Witte, Karl-Klaus Conzelmann, Karl-Peter Hopfner, Science. Epub Science Express 17.1.2013
Manuscript Number: science.1230949

Kontakt:
Professor Dr. Karl-Peter Hopfner
Department of Biochemistry and Gene Center, Ludwig-Maximilians-University, Munich.
Tel. +49 (0) 2180 76953
Fax. +49 (0) 2180 76999
email: hopfner@genzentrum.lmu.de
www.hopfner.genzentrum.lmu.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.lmu.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie