Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Struktur zellulärer Ventile eröffnet neue Therapieansätze

17.05.2018

UZH-Biochemiker haben den detaillierten Aufbau eines volumenregulierten Chloridkanals ermittelt. Dieses zelluläre Ventil wird aktiviert, um zu verhindern, dass die Zellen bersten, wenn sie anschwellen. Das Protein spielt auch eine wichtige Rolle in der Aufnahme von Chemotherapeutika und der Freisetzung von Neurotransmittern bei einem Hirnschlag. Den Chloridkanal gezielt zu regulieren, ist eine vielversprechende Strategie für neue Therapien.

Die Zellen des menschlichen Körpers sind von Membranen umhüllt und stehen mit ihrer Umgebung im osmotischen Gleichgewicht. Verringert sich die Konzentration gelöster Teilchen in der Flüssigkeit, die die Zellen umgibt, beginnen diese zu schwellen. Im Extremfall kann dies dazu führen, dass die Zellen bersten.


Struktur eines volumenregulierten Chloridkanals (Mitte: Schleifenmodell, rechts: Selektivitätsfilter, links: positiv geladene Aminosäure-Regionen)

Raimund Dutzler, UZH

Um dies zu verhindern, aktivieren die Zellen volumenregulierte Chloridkanäle (VRACs) der LRRC8-Protein-Familie. Nimmt das Zellvolumen durch einströmendes Wasser zu, öffnen sich diese Ventile in der Zellmembran. Negativ geladene Chloridionen und ungeladene Osmolyte treten aus und die Zelle nimmt wieder ihren ursprünglichen Zustand ein.

Aufbau eines volumenregulierten Chloridkanals

Obwohl sie erst vor fünf Jahren entdeckt wurden, sind bereits einige Eigenschaften dieser Zellventile bekannt: So steuern VRACs etwa die Aufnahme von Zytostatika in der Krebstherapie oder verursachen die unkontrollierte Ausschüttung von Neurotransmittern ins Gehirn als Folge eines Schlaganfalls.

Bisher unbekannt war hingegen ihre räumliche Struktur und damit die Art und Weise, wie die Kanäle selektiv nur bestimmte Substanzen durch die Membran schleusen. Forschende am Biochemischen Institut der Universität Zürich haben dieses Rätsel nun gelöst.

Das Team unter der Leitung von UZH-Professor Raimund Dutzler präsentiert erstmals die detaillierte molekulare Struktur eines VRACs, die mithilfe von Kryo-Elektronenmikroskopie und Kristallstrukturanalyse bestimmt wurde. Zudem analysierten sie die Funktionsweise des Ionenkanals mit elektrophysiologischen Methoden.

Von der Form zur Funktion

Das VRAC-Eiweiss besteht aus sechs Untereinheiten. Angeordnet um eine gemeinsame Achse bilden diese den Kanal. Das Protein, das in der Zellmembran sitzt, enthält eine kleine Region, die nach aussen ragt, und einen grossen Bereich, die sich im Zellinnern befindet. Dieser innere Teil dürfte eine wichtige Rolle bei der Aktivierung des Kanals spielen.

An der Aussenseite der Membran begrenzt eine Verengung die Porengrösse des Ionenkanals und fungiert als eine Art Filter. «In dieser Region besteht das Protein aus positiv geladenen Aminosäuren, die negativ geladene Chloridionen anziehen und durchschleusen. Grosse Teilchen jedoch werden daran gehindert, die Zellhülle zu durchqueren», sagt Raimund Dutzler.

Therapieansätze bei Gehirnschwellungen und Krebs

Mit ihrer Arbeit schaffen die UZH-Forschenden die Grundlage, die molekularen Mechanismen, mit denen Zellen ihr Volumen regulieren, besser zu verstehen. «Dieses Wissen liefert wertvolle Ansätze, um neue Medikamente zu entwickeln», betont Dutzler.

Beispielsweise schwellen Astrozyten im Gehirn bei cerebraler Ischämie oder einem Schlaganfall an, wodurch der Neurotransmitter Glutamat ausgeschüttet wird – mit schädlichen Folgen für die Betroffenen. Entsprechend dürften Substanzen, die den Ionenkanal gezielt blockieren, zu neuen Behandlungsmöglichkeiten führen.

Eine andere Anwendung zeichnet sich in der Krebstherapie ab: Lässt sich das Zellventil selektiv aktivieren, würde das die Aufnahme von Zytostatika in die Krebszellen verbessern.

Literatur:
Dawid Deneka, Marta Sawicka, Andy K. M. Lam, Cristina Paulino, and Raimund Dutzler. Structure of a volume-regulated anion channel of the LRRC8 family. Nature. May 16, 2018. DOI: 10.1038/s41586-018-0134-y

Projektfinanzierung
Das Projekt wurde mit Mitteln des Schweizerischen Nationalfonds zur Förderung der wissenschaftlichen Forschung (SNF) unterstützt. Die Kryo-EM-Daten wurden mit Elektronenmikroskopen des Zentrums für Mikroskopie und Molekulare Bildgebung der UZH aufgenommen, die mit massgeblicher Unterstützung der Mäxi-Siftung beschafft wurden. Die Röntgenkristallographiedaten wurden am Schweizer Synchrotron des Paul Scherrer Instituts gesammelt.

Kontakt:
Prof. Dr. Raimund Dutzler
Biochemisches Institut
Universität Zürich
Tel. +41 44 635 65 50
E-Mail: dutzler@bioc.uzh.ch

Weitere Informationen:

http://www.media.uzh.ch/de/medienmitteilungen/2018/volumenregulierter-Chloridkan...

Kurt Bodenmüller | Universität Zürich

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Begründerin lebenslanger Beziehungen ist ein schlauer Parasit - Misteln leben energiesparend
17.05.2018 | Max-Planck-Institut für Molekulare Pflanzenphysiologie

nachricht Savannen-Schimpansen leiden unter Hitze-Stress
17.05.2018 | Max-Planck-Institut für evolutionäre Anthropologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Positronen leuchten besser

Leuchtstoffe werden schon lange benutzt, im Alltag zum Beispiel im Bildschirm von Fernsehgeräten oder in PC-Monitoren, in der Wissenschaft zum Untersuchen von Plasmen, Teilchen- oder Antiteilchenstrahlen. Gleich ob Teilchen oder Antiteilchen – treffen sie auf einen Leuchtstoff auf, regen sie ihn zum Lumineszieren an. Unbekannt war jedoch bisher, dass die Lichtausbeute mit Elektronen wesentlich niedriger ist als mit Positronen, ihren Antiteilchen. Dies hat Dr. Eve Stenson im Max-Planck-Institut für Plasmaphysik (IPP) in Garching und Greifswald jetzt beim Vorbereiten von Experimenten mit Materie-Antimaterie-Plasmen entdeckt.

„Wäre Antimaterie nicht so schwierig herzustellen, könnte man auf eine Ära hochleuchtender Niederspannungs-Displays hoffen, in der die Leuchtschirme nicht von...

Im Focus: Erklärung für rätselhafte Quantenoszillationen gefunden

Sogenannte Quanten-Vielteilchen-„Scars“ lassen Quantensysteme länger außerhalb des Gleichgewichtszustandes verweilen. Studie wurde in Nature Physics veröffentlicht

Forschern der Harvard Universität und des MIT war es vor kurzem gelungen, eine Rekordzahl von 53 Atomen einzufangen und ihren Quantenzustand einzeln zu...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Verschränkte Atome leuchten im Gleichklang

Einem Team um Experimentalphysiker Rainer Blatt ist es gelungen, die Quantenverschränkung zweier räumlich getrennter Atome durch die Beobachtung ihrer Lichtemission zu charakterisieren. Dieses grundlegende Experiment könnte zur Entwicklung hochempfindlicher optischer Gradiometer zur präzisen Bestimmung des Schwerefelds oder des Erdmagnetfelds führen.

Das Zeitalter der Quantentechnologie ist längst eingeläutet. In der jahrzehntelangen Erforschung der Quantenwelt wurden Methoden entwickelt, die es heute...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Visual-Computing an Bord der MS Wissenschaft

17.05.2018 | Veranstaltungen

Tagung »Anlagenbau und -betrieb der Zukunft«

17.05.2018 | Veranstaltungen

Zukunftsweisende Forschung und intelligente Technologien – Tag der offenen Tür am Bremer DFKI

14.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Struktur zellulärer Ventile eröffnet neue Therapieansätze

17.05.2018 | Biowissenschaften Chemie

Positronen leuchten besser

17.05.2018 | Physik Astronomie

Schnelltests für genauere Diagnose bei Hirntumoren

17.05.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics