Struktur des zellulären Müllsacks

Das Bild zeigt die Struktur des Autophagozytose-Gerüstes. Mit Hilfe der atomaren Kraftmikroskopie konnte das Höhenprofil des Netzes auf der künstlichen Membran sichtbar gemacht werden. Von der Membran (schwarz) ausgehend erhebt sich allmählich (gelb-rot) das Netzwerk bis zum Höhengrad, der maximalen Dicke des Netzwerks (weiß). Diese zweidimensionale Karte wurde dann auf eine Kugel projiziert, die das Autophagosom darstellen soll. <br>Abbildung: Thomas Wollert<br>Copyright: MPI für Biochemie<br>

Auch in der menschlichen Zelle muss eine molekulare Müllabfuhr alte Proteine oder defekte Zellbestandteile regelmäßig einsammeln und zu Entsorgungsstationen transportieren. Streikt jedoch die zelluläre Müllabfuhr, so können sich schwerwiegende Erkrankungen wie beispielsweise Alzheimer oder Krebs entwickeln.

Wissenschaftler am Max-Planck-Institut für Biochemie in Martinsried bei München konnten jetzt klären, wie ein wichtiges Entsorgungssystem der Zelle – die Autophagozytose – im Detail funktioniert. Die Ergebnisse der Studie erschienen jetzt im Journal Cell.

Die Autophagozytose ist das Transportsystem der Zelle, welches den zellulären Abfall erkennt, verpackt, und zu zellulären Müllverbrennungsanlagen, den Lysosomen, transportiert. Somit dient die Autophagozytose vor allem dem Schutz der Zelle, indem sie verhindert, dass sich überschüssiges Material ansammelt. Ist die Autophagozytose verlangsamt oder vollständig gestoppt, können schwerwiegende Erkrankungen wie Alzheimer, Parkinson oder Krebs entstehen.

Ähnlich wie ein Müllsack den Abfall umschließt, legt sich während der Autophagozytose eine Membran um den zellulären Müll. Dieser molekulare „Müllsack“ wird als Autophagosom bezeichnet. Ist der Müll vollständig verpackt, transportiert die Zelle im nächsten Schritt das Autophagosom zu den Lysosomen, die ebenfalls von einer Membran umgeben sind. So kann der Abfall anschließend durch die Verschmelzung beider Membranen in das Innere des Lysosoms gelangen. Diese Organellen funktionieren wie Recyclinghöfe. Eine Vielzahl von Enzymen zerlegt darin das zu recycelnde Material in seine Grundbausteine.

Damit sich die Membran bei der Autophagozytose den unterschiedlichen Formen und Größen des Abfalls anpassen kann, muss sie vor allem flexibel sein. Zusätzlich benötigt sie jedoch ein mechanisches Gerüst, das den Müllsack stabilisiert. Thomas Wollert und seine Forschungsgruppe „Molekulare Membran- und Organell-Biologie“ konnten jetzt die molekulare Architektur dieses Stützgerüstes identifizieren und sichtbar machen.

Kleine Maschen – große Wirkung
Bei dem Gerüst handelt es sich um ein flaches Netz, das die Membran des Autophagosoms vollständig bedeckt. Die Knotenpunkte des Netzes bestehen aus einem kleinen Protein, Atg8, das als Membrananker dient und an die autophagosomale Membran geheftet wird. Ein weiterer Proteinkomplex vernetzt die membranverankerten Atg8-Moleküle miteinander und bildet so das Gerüst. Die Länge einer Masche beträgt nur 16 millionstel Millimeter (16 nm) und das Netz ist nur 8 millionstel Millimeter (8 nm) dick. Hat die Membran den Abfall vollständig umschlossen, wird das Gerüst wieder entfernt, indem ein Enzym Atg8 von der Membran schneidet.

Die Wissenschaftler waren zudem in der Lage, den Auf- und Abbau des Gerüstes an künstlichen Membranen im Reagenzglas nachzubilden und live zu verfolgen. „Es ist wichtig, dass wir diesen Prozess begreifen, um ihn gezielt steuern zu können“, beschreibt Thomas Wollert, Forschungsgruppenleiter am MPIB, seine Ergebnisse. „Könnten wir die Autophagozytose zum Beispiel beschleunigen, ließen sich zukünftig vielleicht Krankheiten wie Krebs oder Alzheimer heilen.“[VS]

Originalpublikation:
Kaufmann A., V. Beier, H. G. Franquelim and Wollert T., Molecular Mechanism of Autophagic Membrane-Scaffold Assembly and Disassembly, Cell, January 30, 2014

DOI: 10.1016/j.cell.2013.12.022

Kontakt:

Dr. Thomas Wollert
Molekulare Membran- und Organell-Biologie
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
Email: wollert@biochem.mpg.de
www.biochem.mpg.de/wollert
Anja Konschak
Öffentlichkeitsarbeit
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
Tel. +49 89 8578-2824
E-Mail: konschak@biochem.mpg.de

Weitere Informationen:
http://www.biochem.mpg.de/news/pressroom
– Pressemitteilungen des Max-Planck Institut für Biochemie
http://www.biochem.mpg.de/en/rg/wollert
– Webseite der Forschungsgruppe „Molekulare Membran- und Organell-Biologie“ (Thomas Wollert)

Media Contact

Anja Konschak Max-Planck-Institut

Weitere Informationen:

http://www.biochem.mpg.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer