Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Struktur des zellulären Müllsacks

31.01.2014
Wenn die Müllabfuhr mal wieder streikt, stapelt sich der Müll vor der Tür und zieht Ungeziefer wie Ratten und Mäuse an.

Auch in der menschlichen Zelle muss eine molekulare Müllabfuhr alte Proteine oder defekte Zellbestandteile regelmäßig einsammeln und zu Entsorgungsstationen transportieren. Streikt jedoch die zelluläre Müllabfuhr, so können sich schwerwiegende Erkrankungen wie beispielsweise Alzheimer oder Krebs entwickeln.


Das Bild zeigt die Struktur des Autophagozytose-Gerüstes. Mit Hilfe der atomaren Kraftmikroskopie konnte das Höhenprofil des Netzes auf der künstlichen Membran sichtbar gemacht werden. Von der Membran (schwarz) ausgehend erhebt sich allmählich (gelb-rot) das Netzwerk bis zum Höhengrad, der maximalen Dicke des Netzwerks (weiß). Diese zweidimensionale Karte wurde dann auf eine Kugel projiziert, die das Autophagosom darstellen soll.
Abbildung: Thomas Wollert
Copyright: MPI für Biochemie

Wissenschaftler am Max-Planck-Institut für Biochemie in Martinsried bei München konnten jetzt klären, wie ein wichtiges Entsorgungssystem der Zelle – die Autophagozytose – im Detail funktioniert. Die Ergebnisse der Studie erschienen jetzt im Journal Cell.

Die Autophagozytose ist das Transportsystem der Zelle, welches den zellulären Abfall erkennt, verpackt, und zu zellulären Müllverbrennungsanlagen, den Lysosomen, transportiert. Somit dient die Autophagozytose vor allem dem Schutz der Zelle, indem sie verhindert, dass sich überschüssiges Material ansammelt. Ist die Autophagozytose verlangsamt oder vollständig gestoppt, können schwerwiegende Erkrankungen wie Alzheimer, Parkinson oder Krebs entstehen.

Ähnlich wie ein Müllsack den Abfall umschließt, legt sich während der Autophagozytose eine Membran um den zellulären Müll. Dieser molekulare „Müllsack“ wird als Autophagosom bezeichnet. Ist der Müll vollständig verpackt, transportiert die Zelle im nächsten Schritt das Autophagosom zu den Lysosomen, die ebenfalls von einer Membran umgeben sind. So kann der Abfall anschließend durch die Verschmelzung beider Membranen in das Innere des Lysosoms gelangen. Diese Organellen funktionieren wie Recyclinghöfe. Eine Vielzahl von Enzymen zerlegt darin das zu recycelnde Material in seine Grundbausteine.

Damit sich die Membran bei der Autophagozytose den unterschiedlichen Formen und Größen des Abfalls anpassen kann, muss sie vor allem flexibel sein. Zusätzlich benötigt sie jedoch ein mechanisches Gerüst, das den Müllsack stabilisiert. Thomas Wollert und seine Forschungsgruppe „Molekulare Membran- und Organell-Biologie“ konnten jetzt die molekulare Architektur dieses Stützgerüstes identifizieren und sichtbar machen.

Kleine Maschen – große Wirkung
Bei dem Gerüst handelt es sich um ein flaches Netz, das die Membran des Autophagosoms vollständig bedeckt. Die Knotenpunkte des Netzes bestehen aus einem kleinen Protein, Atg8, das als Membrananker dient und an die autophagosomale Membran geheftet wird. Ein weiterer Proteinkomplex vernetzt die membranverankerten Atg8-Moleküle miteinander und bildet so das Gerüst. Die Länge einer Masche beträgt nur 16 millionstel Millimeter (16 nm) und das Netz ist nur 8 millionstel Millimeter (8 nm) dick. Hat die Membran den Abfall vollständig umschlossen, wird das Gerüst wieder entfernt, indem ein Enzym Atg8 von der Membran schneidet.

Die Wissenschaftler waren zudem in der Lage, den Auf- und Abbau des Gerüstes an künstlichen Membranen im Reagenzglas nachzubilden und live zu verfolgen. „Es ist wichtig, dass wir diesen Prozess begreifen, um ihn gezielt steuern zu können“, beschreibt Thomas Wollert, Forschungsgruppenleiter am MPIB, seine Ergebnisse. „Könnten wir die Autophagozytose zum Beispiel beschleunigen, ließen sich zukünftig vielleicht Krankheiten wie Krebs oder Alzheimer heilen.“[VS]

Originalpublikation:
Kaufmann A., V. Beier, H. G. Franquelim and Wollert T., Molecular Mechanism of Autophagic Membrane-Scaffold Assembly and Disassembly, Cell, January 30, 2014

DOI: 10.1016/j.cell.2013.12.022

Kontakt:

Dr. Thomas Wollert
Molekulare Membran- und Organell-Biologie
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
Email: wollert@biochem.mpg.de
www.biochem.mpg.de/wollert
Anja Konschak
Öffentlichkeitsarbeit
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
Tel. +49 89 8578-2824
E-Mail: konschak@biochem.mpg.de

Weitere Informationen:
http://www.biochem.mpg.de/news/pressroom
- Pressemitteilungen des Max-Planck Institut für Biochemie
http://www.biochem.mpg.de/en/rg/wollert
- Webseite der Forschungsgruppe "Molekulare Membran- und Organell-Biologie" (Thomas Wollert)

Anja Konschak | Max-Planck-Institut
Weitere Informationen:
http://www.biochem.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Auf der molekularen Streckbank
24.02.2017 | Technische Universität München

nachricht Sicherungskopie im Zentralhirn: Wie Fruchtfliegen ein Ortsgedächtnis bilden
24.02.2017 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: „Vernetzte Autonome Systeme“ von acatech und DFKI auf der CeBIT

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) in Kooperation mit der Deutschen Messe AG vernetzte Autonome Systeme. In Halle 12 am Stand B 63 erwarten die Besucherinnen und Besucher unter anderem Roboter, die Hand in Hand mit Menschen zusammenarbeiten oder die selbstständig gefährliche Umgebungen erkunden.

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für...

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aufbruch: Forschungsmethoden in einer personalisierten Medizin

24.02.2017 | Veranstaltungen

Österreich erzeugt erstmals Erdgas aus Sonnen- und Windenergie

24.02.2017 | Veranstaltungen

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer HHI auf dem Mobile World Congress mit VR- und 5G-Technologien

24.02.2017 | Messenachrichten

MWC 2017: 5G-Hauptstadt Berlin

24.02.2017 | Messenachrichten

Auf der molekularen Streckbank

24.02.2017 | Biowissenschaften Chemie