Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Struktur des zellulären Müllsacks

31.01.2014
Wenn die Müllabfuhr mal wieder streikt, stapelt sich der Müll vor der Tür und zieht Ungeziefer wie Ratten und Mäuse an.

Auch in der menschlichen Zelle muss eine molekulare Müllabfuhr alte Proteine oder defekte Zellbestandteile regelmäßig einsammeln und zu Entsorgungsstationen transportieren. Streikt jedoch die zelluläre Müllabfuhr, so können sich schwerwiegende Erkrankungen wie beispielsweise Alzheimer oder Krebs entwickeln.


Das Bild zeigt die Struktur des Autophagozytose-Gerüstes. Mit Hilfe der atomaren Kraftmikroskopie konnte das Höhenprofil des Netzes auf der künstlichen Membran sichtbar gemacht werden. Von der Membran (schwarz) ausgehend erhebt sich allmählich (gelb-rot) das Netzwerk bis zum Höhengrad, der maximalen Dicke des Netzwerks (weiß). Diese zweidimensionale Karte wurde dann auf eine Kugel projiziert, die das Autophagosom darstellen soll.
Abbildung: Thomas Wollert
Copyright: MPI für Biochemie

Wissenschaftler am Max-Planck-Institut für Biochemie in Martinsried bei München konnten jetzt klären, wie ein wichtiges Entsorgungssystem der Zelle – die Autophagozytose – im Detail funktioniert. Die Ergebnisse der Studie erschienen jetzt im Journal Cell.

Die Autophagozytose ist das Transportsystem der Zelle, welches den zellulären Abfall erkennt, verpackt, und zu zellulären Müllverbrennungsanlagen, den Lysosomen, transportiert. Somit dient die Autophagozytose vor allem dem Schutz der Zelle, indem sie verhindert, dass sich überschüssiges Material ansammelt. Ist die Autophagozytose verlangsamt oder vollständig gestoppt, können schwerwiegende Erkrankungen wie Alzheimer, Parkinson oder Krebs entstehen.

Ähnlich wie ein Müllsack den Abfall umschließt, legt sich während der Autophagozytose eine Membran um den zellulären Müll. Dieser molekulare „Müllsack“ wird als Autophagosom bezeichnet. Ist der Müll vollständig verpackt, transportiert die Zelle im nächsten Schritt das Autophagosom zu den Lysosomen, die ebenfalls von einer Membran umgeben sind. So kann der Abfall anschließend durch die Verschmelzung beider Membranen in das Innere des Lysosoms gelangen. Diese Organellen funktionieren wie Recyclinghöfe. Eine Vielzahl von Enzymen zerlegt darin das zu recycelnde Material in seine Grundbausteine.

Damit sich die Membran bei der Autophagozytose den unterschiedlichen Formen und Größen des Abfalls anpassen kann, muss sie vor allem flexibel sein. Zusätzlich benötigt sie jedoch ein mechanisches Gerüst, das den Müllsack stabilisiert. Thomas Wollert und seine Forschungsgruppe „Molekulare Membran- und Organell-Biologie“ konnten jetzt die molekulare Architektur dieses Stützgerüstes identifizieren und sichtbar machen.

Kleine Maschen – große Wirkung
Bei dem Gerüst handelt es sich um ein flaches Netz, das die Membran des Autophagosoms vollständig bedeckt. Die Knotenpunkte des Netzes bestehen aus einem kleinen Protein, Atg8, das als Membrananker dient und an die autophagosomale Membran geheftet wird. Ein weiterer Proteinkomplex vernetzt die membranverankerten Atg8-Moleküle miteinander und bildet so das Gerüst. Die Länge einer Masche beträgt nur 16 millionstel Millimeter (16 nm) und das Netz ist nur 8 millionstel Millimeter (8 nm) dick. Hat die Membran den Abfall vollständig umschlossen, wird das Gerüst wieder entfernt, indem ein Enzym Atg8 von der Membran schneidet.

Die Wissenschaftler waren zudem in der Lage, den Auf- und Abbau des Gerüstes an künstlichen Membranen im Reagenzglas nachzubilden und live zu verfolgen. „Es ist wichtig, dass wir diesen Prozess begreifen, um ihn gezielt steuern zu können“, beschreibt Thomas Wollert, Forschungsgruppenleiter am MPIB, seine Ergebnisse. „Könnten wir die Autophagozytose zum Beispiel beschleunigen, ließen sich zukünftig vielleicht Krankheiten wie Krebs oder Alzheimer heilen.“[VS]

Originalpublikation:
Kaufmann A., V. Beier, H. G. Franquelim and Wollert T., Molecular Mechanism of Autophagic Membrane-Scaffold Assembly and Disassembly, Cell, January 30, 2014

DOI: 10.1016/j.cell.2013.12.022

Kontakt:

Dr. Thomas Wollert
Molekulare Membran- und Organell-Biologie
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
Email: wollert@biochem.mpg.de
www.biochem.mpg.de/wollert
Anja Konschak
Öffentlichkeitsarbeit
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
Tel. +49 89 8578-2824
E-Mail: konschak@biochem.mpg.de

Weitere Informationen:
http://www.biochem.mpg.de/news/pressroom
- Pressemitteilungen des Max-Planck Institut für Biochemie
http://www.biochem.mpg.de/en/rg/wollert
- Webseite der Forschungsgruppe "Molekulare Membran- und Organell-Biologie" (Thomas Wollert)

Anja Konschak | Max-Planck-Institut
Weitere Informationen:
http://www.biochem.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Superkondensatoren aus Holzbestandteilen
24.05.2018 | Gesellschaft Deutscher Chemiker e.V.

nachricht Was einen guten Katalysator ausmacht
24.05.2018 | Carl von Ossietzky-Universität Oldenburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Hilfe molekularer Schalter lassen sich künftig neuartige Bauelemente entwickeln

Einem Forscherteam unter Führung von Physikern der Technischen Universität München (TUM) ist es gelungen, spezielle Moleküle mit einer angelegten Spannung zwischen zwei strukturell unterschiedlichen Zuständen hin und her zu schalten. Derartige Nano-Schalter könnten Basis für neuartige Bauelemente sein, die auf Silizium basierende Komponenten durch organische Moleküle ersetzen.

Die Entwicklung neuer elektronischer Technologien fordert eine ständige Verkleinerung funktioneller Komponenten. Physikern der TU München ist es im Rahmen...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Im Focus: Faserlaser mit einstellbarer Wellenlänge

Faserlaser sind ein effizientes und robustes Werkzeug zum Schweißen und Schneiden von Metallen beispielsweise in der Automobilindustrie. Systeme bei denen die Wellenlänge des Laserlichts flexibel einstellbar ist, sind für spektroskopische Anwendungen und die Medizintechnik interessant. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT) haben, im Rahmen des vom Bundesministerium für Bildung und Forschung (BMBF) geförderten Projekts „FlexTune“, ein neues Abstimmkonzept realisiert, das erstmals verschiedene Emissionswellenlängen voneinander unabhängig und zeitlich synchron erzeugt.

Faserlaser bieten im Vergleich zu herkömmlichen Lasern eine höhere Strahlqualität und Energieeffizienz. Integriert in einen vollständig faserbasierten...

Im Focus: LZH zeigt Lasermaterialbearbeitung von morgen auf der LASYS 2018

Auf der LASYS 2018 zeigt das Laser Zentrum Hannover e.V. (LZH) vom 5. bis zum 7. Juni Prozesse für die Lasermaterialbearbeitung von morgen in Halle 4 an Stand 4E75. Mit gesprengten Bombenhüllen präsentiert das LZH in Stuttgart zudem erste Ergebnisse aus einem Forschungsprojekt zur zivilen Sicherheit.

Auf der diesjährigen LASYS stellt das LZH lichtbasierte Prozesse wie Schneiden, Schweißen, Abtragen und Strukturieren sowie die additive Fertigung für Metalle,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Größter Astronomie-Kongress kommt nach Wien

24.05.2018 | Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Was einen guten Katalysator ausmacht

24.05.2018 | Biowissenschaften Chemie

Superkondensatoren aus Holzbestandteilen

24.05.2018 | Biowissenschaften Chemie

Neue Schaltschrank-Plattform für die Energiewelt

24.05.2018 | Messenachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics