Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Struktur des zellulären Müllsacks

31.01.2014
Wenn die Müllabfuhr mal wieder streikt, stapelt sich der Müll vor der Tür und zieht Ungeziefer wie Ratten und Mäuse an.

Auch in der menschlichen Zelle muss eine molekulare Müllabfuhr alte Proteine oder defekte Zellbestandteile regelmäßig einsammeln und zu Entsorgungsstationen transportieren. Streikt jedoch die zelluläre Müllabfuhr, so können sich schwerwiegende Erkrankungen wie beispielsweise Alzheimer oder Krebs entwickeln.


Das Bild zeigt die Struktur des Autophagozytose-Gerüstes. Mit Hilfe der atomaren Kraftmikroskopie konnte das Höhenprofil des Netzes auf der künstlichen Membran sichtbar gemacht werden. Von der Membran (schwarz) ausgehend erhebt sich allmählich (gelb-rot) das Netzwerk bis zum Höhengrad, der maximalen Dicke des Netzwerks (weiß). Diese zweidimensionale Karte wurde dann auf eine Kugel projiziert, die das Autophagosom darstellen soll.
Abbildung: Thomas Wollert
Copyright: MPI für Biochemie

Wissenschaftler am Max-Planck-Institut für Biochemie in Martinsried bei München konnten jetzt klären, wie ein wichtiges Entsorgungssystem der Zelle – die Autophagozytose – im Detail funktioniert. Die Ergebnisse der Studie erschienen jetzt im Journal Cell.

Die Autophagozytose ist das Transportsystem der Zelle, welches den zellulären Abfall erkennt, verpackt, und zu zellulären Müllverbrennungsanlagen, den Lysosomen, transportiert. Somit dient die Autophagozytose vor allem dem Schutz der Zelle, indem sie verhindert, dass sich überschüssiges Material ansammelt. Ist die Autophagozytose verlangsamt oder vollständig gestoppt, können schwerwiegende Erkrankungen wie Alzheimer, Parkinson oder Krebs entstehen.

Ähnlich wie ein Müllsack den Abfall umschließt, legt sich während der Autophagozytose eine Membran um den zellulären Müll. Dieser molekulare „Müllsack“ wird als Autophagosom bezeichnet. Ist der Müll vollständig verpackt, transportiert die Zelle im nächsten Schritt das Autophagosom zu den Lysosomen, die ebenfalls von einer Membran umgeben sind. So kann der Abfall anschließend durch die Verschmelzung beider Membranen in das Innere des Lysosoms gelangen. Diese Organellen funktionieren wie Recyclinghöfe. Eine Vielzahl von Enzymen zerlegt darin das zu recycelnde Material in seine Grundbausteine.

Damit sich die Membran bei der Autophagozytose den unterschiedlichen Formen und Größen des Abfalls anpassen kann, muss sie vor allem flexibel sein. Zusätzlich benötigt sie jedoch ein mechanisches Gerüst, das den Müllsack stabilisiert. Thomas Wollert und seine Forschungsgruppe „Molekulare Membran- und Organell-Biologie“ konnten jetzt die molekulare Architektur dieses Stützgerüstes identifizieren und sichtbar machen.

Kleine Maschen – große Wirkung
Bei dem Gerüst handelt es sich um ein flaches Netz, das die Membran des Autophagosoms vollständig bedeckt. Die Knotenpunkte des Netzes bestehen aus einem kleinen Protein, Atg8, das als Membrananker dient und an die autophagosomale Membran geheftet wird. Ein weiterer Proteinkomplex vernetzt die membranverankerten Atg8-Moleküle miteinander und bildet so das Gerüst. Die Länge einer Masche beträgt nur 16 millionstel Millimeter (16 nm) und das Netz ist nur 8 millionstel Millimeter (8 nm) dick. Hat die Membran den Abfall vollständig umschlossen, wird das Gerüst wieder entfernt, indem ein Enzym Atg8 von der Membran schneidet.

Die Wissenschaftler waren zudem in der Lage, den Auf- und Abbau des Gerüstes an künstlichen Membranen im Reagenzglas nachzubilden und live zu verfolgen. „Es ist wichtig, dass wir diesen Prozess begreifen, um ihn gezielt steuern zu können“, beschreibt Thomas Wollert, Forschungsgruppenleiter am MPIB, seine Ergebnisse. „Könnten wir die Autophagozytose zum Beispiel beschleunigen, ließen sich zukünftig vielleicht Krankheiten wie Krebs oder Alzheimer heilen.“[VS]

Originalpublikation:
Kaufmann A., V. Beier, H. G. Franquelim and Wollert T., Molecular Mechanism of Autophagic Membrane-Scaffold Assembly and Disassembly, Cell, January 30, 2014

DOI: 10.1016/j.cell.2013.12.022

Kontakt:

Dr. Thomas Wollert
Molekulare Membran- und Organell-Biologie
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
Email: wollert@biochem.mpg.de
www.biochem.mpg.de/wollert
Anja Konschak
Öffentlichkeitsarbeit
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
Tel. +49 89 8578-2824
E-Mail: konschak@biochem.mpg.de

Weitere Informationen:
http://www.biochem.mpg.de/news/pressroom
- Pressemitteilungen des Max-Planck Institut für Biochemie
http://www.biochem.mpg.de/en/rg/wollert
- Webseite der Forschungsgruppe "Molekulare Membran- und Organell-Biologie" (Thomas Wollert)

Anja Konschak | Max-Planck-Institut
Weitere Informationen:
http://www.biochem.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Bakterieller Untermieter macht Blattnahrung für Käfer verdaulich
17.11.2017 | Max-Planck-Institut für chemische Ökologie

nachricht Neues Werkzeug für gezielten Proteinabbau
17.11.2017 | Max-Planck-Institut für biophysikalische Chemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte