Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Struktur eines neuen Werkzeugs für Gentherapie aufgeklärt

07.02.2014
Auch Bakterien verfügen über ein Immunsystem – und dieses könnte in der Molekularen Medizin auch für den Menschen wichtig werden

Ein besonderes Schneideprotein der bakteriellen Abwehr gegen Viren kann nämlich die Buchstabenfolge der DNA lesen und diese ganz gezielt schneiden. Biochemiker der Universität Zürich zeigen den Wirkmechanismus erstmals in Bildern.

Krankmacher können auch selber krank werden: Wie Mensch und Tier werden auch Bakterien von Viren angegriffen, so etwa von Bakteriophagen. Als Schutz haben viele Bakterien eine Art Immunsystem entwickelt. Mithilfe eines spezifischen Abwehrsystems können die Bakterien fremde DNA-Abschnitte, die Viren eingeschleust haben, erkennen und zerstören. Ein zentraler Bestandteil dieses sogenannten CRISPR-Abwehrsystems (Clustered Regularly Interspaced Short Palindromic Repeats) ist ein bestimmtes Protein, das Protein Cas9. Dieses kann in Zusammenarbeit mit bestimmten kurzen RNA-Sonden die fremde DNA gezielt erkennen, schneiden und so deaktivieren.

«Das Cas9-Protein funktioniert wie eine molekulare Schere», erklärt Prof. Martin Jinek vom Biochemischen Institut der Universität Zürich. Eine Fähigkeit, die bald nicht nur für die Bakterien nützlich sein könnte: Das Schneideprotein könnte auch der Molekularen Medizin und der Gentherapie zugutekommen, denn es kann bestimmte Buchstabenfolgen im genetischen Code genau erkennen und dort schneiden. Jinek kann nun im Wissenschaftsjournal «Science» erstmals die 3D-Struktur dieses Cas9-Proteins und dessen grundlegenden Wirkungsmechanismus zeigen.

Bakterielles Protein kann DNA hochpräzis schneiden

Die Bilder aus der Röntgenstrukturanalyse und der Elektronenmikroskopie sind faszinierend: Das Cas9-Protein ist ein halbmondförmiges Molekül mit zwei Lappen, welche Gruben enthalten, die schliesslich an die RNA-Sonden und an die fremde DNA binden. Die Aufnahmen der beiden Forschungsgruppen um Martin Jinek vom Biochemischen Institut und um Prof. Jennifer Doudna und Prof. Eva Nogales der University of California in Berkeley enthüllen erstmals auch den Schneidemechanismus des Moleküls Schritt für Schritt: Beim gleichzeitigen Binden an die RNA-Sonden und die fremde DNA verändert das Protein seine dreidimensionale Struktur drastisch, die beiden Lappen berühren sich und bilden einen Kanal, in dem schliesslich das Schneiden der DNA erfolgt. «Wichtig zu erkennen ist, dass das Protein nicht eigenständig schneiden kann, sondern die Bindung an die kurze RNA-Sonde braucht, um die richtige Form anzunehmen und die richtige DNA zu erkennen», erklärt der Zürcher Biochemiker.

Hohes Potenzial für die Gentherapie

Das Verständnis von Mechanismus und Struktur des Cas9-Proteins ist gemäss Jinek wichtig, wenn dieses später als Werkzeug in der Gentherapie genutzt werden soll. Durch gezielte Veränderungen könnte das Schneideprotein künftig auch eine Ziel-DNA in gewünschter Art und Weise schneiden – und so bestenfalls eine «präzise Korrektur eines Genabschnittes vornehmen, der zu einer Generkrankung führt», blickt Jinek in die Zukunft. Das Potenzial des Proteins werde hoch eingeschätzt, so der Biochemiker: Das «Science Magazine» hatte letztes Jahr das Cas9-Protein als revolutionäres Werkzeug der Gentechnik in den «Top 10 Breakthroughs of 2013» aufgeführt.

Literatur:

Martin Jinek, Eva Nogales, Jennifer A. Doudna et al. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science, February 6, 2014. Doi:10.1126/science.1247997

Bettina Jakob | Universität Zürich
Weitere Informationen:
http://www.uzh.ch

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics