Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Struktur eines neuen Werkzeugs für Gentherapie aufgeklärt

07.02.2014
Auch Bakterien verfügen über ein Immunsystem – und dieses könnte in der Molekularen Medizin auch für den Menschen wichtig werden

Ein besonderes Schneideprotein der bakteriellen Abwehr gegen Viren kann nämlich die Buchstabenfolge der DNA lesen und diese ganz gezielt schneiden. Biochemiker der Universität Zürich zeigen den Wirkmechanismus erstmals in Bildern.

Krankmacher können auch selber krank werden: Wie Mensch und Tier werden auch Bakterien von Viren angegriffen, so etwa von Bakteriophagen. Als Schutz haben viele Bakterien eine Art Immunsystem entwickelt. Mithilfe eines spezifischen Abwehrsystems können die Bakterien fremde DNA-Abschnitte, die Viren eingeschleust haben, erkennen und zerstören. Ein zentraler Bestandteil dieses sogenannten CRISPR-Abwehrsystems (Clustered Regularly Interspaced Short Palindromic Repeats) ist ein bestimmtes Protein, das Protein Cas9. Dieses kann in Zusammenarbeit mit bestimmten kurzen RNA-Sonden die fremde DNA gezielt erkennen, schneiden und so deaktivieren.

«Das Cas9-Protein funktioniert wie eine molekulare Schere», erklärt Prof. Martin Jinek vom Biochemischen Institut der Universität Zürich. Eine Fähigkeit, die bald nicht nur für die Bakterien nützlich sein könnte: Das Schneideprotein könnte auch der Molekularen Medizin und der Gentherapie zugutekommen, denn es kann bestimmte Buchstabenfolgen im genetischen Code genau erkennen und dort schneiden. Jinek kann nun im Wissenschaftsjournal «Science» erstmals die 3D-Struktur dieses Cas9-Proteins und dessen grundlegenden Wirkungsmechanismus zeigen.

Bakterielles Protein kann DNA hochpräzis schneiden

Die Bilder aus der Röntgenstrukturanalyse und der Elektronenmikroskopie sind faszinierend: Das Cas9-Protein ist ein halbmondförmiges Molekül mit zwei Lappen, welche Gruben enthalten, die schliesslich an die RNA-Sonden und an die fremde DNA binden. Die Aufnahmen der beiden Forschungsgruppen um Martin Jinek vom Biochemischen Institut und um Prof. Jennifer Doudna und Prof. Eva Nogales der University of California in Berkeley enthüllen erstmals auch den Schneidemechanismus des Moleküls Schritt für Schritt: Beim gleichzeitigen Binden an die RNA-Sonden und die fremde DNA verändert das Protein seine dreidimensionale Struktur drastisch, die beiden Lappen berühren sich und bilden einen Kanal, in dem schliesslich das Schneiden der DNA erfolgt. «Wichtig zu erkennen ist, dass das Protein nicht eigenständig schneiden kann, sondern die Bindung an die kurze RNA-Sonde braucht, um die richtige Form anzunehmen und die richtige DNA zu erkennen», erklärt der Zürcher Biochemiker.

Hohes Potenzial für die Gentherapie

Das Verständnis von Mechanismus und Struktur des Cas9-Proteins ist gemäss Jinek wichtig, wenn dieses später als Werkzeug in der Gentherapie genutzt werden soll. Durch gezielte Veränderungen könnte das Schneideprotein künftig auch eine Ziel-DNA in gewünschter Art und Weise schneiden – und so bestenfalls eine «präzise Korrektur eines Genabschnittes vornehmen, der zu einer Generkrankung führt», blickt Jinek in die Zukunft. Das Potenzial des Proteins werde hoch eingeschätzt, so der Biochemiker: Das «Science Magazine» hatte letztes Jahr das Cas9-Protein als revolutionäres Werkzeug der Gentechnik in den «Top 10 Breakthroughs of 2013» aufgeführt.

Literatur:

Martin Jinek, Eva Nogales, Jennifer A. Doudna et al. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science, February 6, 2014. Doi:10.1126/science.1247997

Bettina Jakob | Universität Zürich
Weitere Informationen:
http://www.uzh.ch

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Software mit Grips
20.04.2018 | Max-Planck-Institut für Hirnforschung, Frankfurt am Main

nachricht Einen Schritt näher an die Wirklichkeit
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics