Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Struktur einer altertümlichen biologischen Uhr enthüllt

17.03.2017

Ein Team aus deutschen und niederländischen Forschern hat unter der Leitung von Friedrich Förster und Albert Heck die Funktionsweise von einer der ältesten biologischen Uhren der Erdgeschichte in Cyanobakterien enthüllt. Cyanobakterien, auch ‚Blaualgen’ genannt, gehören zu den ältesten Organismen der Erde die durch Photosynthese Sauerstoff produzierten. Sie bilden damit die Basis für irdisches Leben. Mit Hilfe modernster Methoden der molekularen Strukturanalyse gelang es den Forschern vom Max-Planck-Institut für Biochemie und der Universität Utrecht drei ‚Uhr’-Proteine im Detail zu analysieren und ihr Zusammenspiel zu verstehen. Die Ergebnisse wurden im Fachjournal Science publiziert.

Bereits seit zehn Jahren wissen wir, dass die biologische Uhr der Cyanobakterien aus nur drei Proteinbestandteilen KaiA, KaiB und KaiC aufgebaut ist. Diese Proteine bilden die Grundbausteine eines präzisen Uhrwerks und entsprechen damit den Zahnrädern, den Federn und dem Schwungrad einer mechanischen Uhr.


Die molekularen Strukturen der ‚eingefrorenen’ biologischen Uhr von Cyanobakterien konnten Forscher mit Hilfe der Kryo-Elektronenmikroskopie im Detail entschlüsseln.

Illustration: P. Lössl

Wird diesem System Energie zugeführt - ähnlich dem Aufziehen einer Uhr ‒ bilden diese drei Proteine, ohne weitere äußere Einwirkung, den Tag-Nacht-Rhythmus nach. Im Reagenzglas ist ein solch isoliertes System über Wochen stabil. Bereits 2005 beschrieben japanische Wissenschaftler dieses Phänomen, jedoch war bis heute unklar wie diese drei ‚Uhr’-Proteine dies zusammen tatsächlich bewerkstelligen.

In der aktuellen Studie nahmen sich nun die Wissenschaftler vom Max-Planck-Institut für Biochemie und der Universität Utrecht der Aufklärung dieser Aufgabe an. Dafür setzten sie modernste Methoden der molekularen Strukturanalyse ein, wie die der nativen Massenspektrometrie und der Kryo-Elektronenmikroskopie.

William Faulkner

Doch wie konnten die Wissenschaftler jetzt die Funktion der einzelnen Teile aufklären? "Um das ticken der biologischen Uhr in Cyanobakterien zu verstehen, haben wir im übertragenen Sinne die Zeit gestoppt", erklärt der Forschungsleiter Heck aus Utrecht.

"Oder wie William Faulkner, Nobelpreisträger für Literatur einst sagte: 'Nur wenn die Uhr anhält, kommt die Zeit ins Leben.' Faulkner sprach vom Innehalten in der ständigen Hast des Lebens. Das war auch bei uns der Trick. Wir haben die biologische Uhr gestoppt indem wir sie eine Woche lang in den Kühlschrank gelegt haben. Im sprichwörtlichen Sinne haben wir die Zeit eingefroren.“

Hereingezoomt

Die molekularen Strukturen dieser ‚eingefrorenen’ Uhr konnten die Forscher mit Hilfe der Kryo-Elektronenmikroskopie im Detail untersuchen. So gelang es die Position dieser ‚Uhr’-Proteine im Uhrwerk zu bestimmen und zu verstehen, wie die einzelnen Komponenten - der Antrieb, die Feder und das Schwungrad ‒ dieser biologischen Uhr zusammenarbeiten. Die native Massenspektrometrie ermöglichte es dahingegen, die Häufigkeit des komplexen Ab- und Aufbaus dieser drei Proteine KaiA, KaiB und KaiC während eines 24-Stunden Zyklus aufzuklären und die rhythmusgebenden Proteinkomponenten zu bestimmen.

„Obwohl die biologische Uhr der Cyanobakterien erdgeschichtlich sehr alt ist können wir auch heute aus diesem System viel lernen“, so Heck. Vor wenigen Jahren entdeckten Forscher einen ähnlichen Mechanismus in unseren roten Blutzellen.

„Cyanobakterien waren die ersten Sauerstoff produzierenden Organismen und haben damit die Grundlage für unser heutiges Leben geschaffen. Die Erkenntnisse dieser Studie bieten neue Einblicke in die biologischen ‚U(h)r’-Mechanismen des Lebens und bestimmte Aspekte können wir direkt in der klinischen Forschung weiter verfolgen“, fasst Heck zusammen.

Originalpublikation:
J. Snijder, J.M. Schuller, A. Wiegard, P. Lössl, N. Schmelling, I.M.Axmann, J.M. Plitzko, F. Förster and A.J.R. Heck: Structures of the cyanobacterial circadian oscillator frozen in a fully assembled state, Science, März 2017

Kontakt:
Prof. Dr. Jürgen Plitzko
Abteilung Strukturbiologie
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
E-Mail: plitzko@biochem.mpg.de
www.biochem.mpg.de/baumeister

Dr. Christiane Menzfeld
Öffentlichkeitsarbeit
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
Tel. +49 89 8578-2824
E-Mail: pr@biochem.mpg.de
www.biochem.mpg.de

Weitere Informationen:

http://www.biochem.mpg.de - Webseite des Max-Planck-Institutes für Biochemie

Dr. Christiane Menzfeld | Max-Planck-Institut für Biochemie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen
20.09.2017 | Veterinärmedizinische Universität Wien

nachricht Molekulare Kraftmesser
20.09.2017 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik