Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stressbewältigung im Gehirn

05.11.2014

MikroRNA-Molekül verändert Reaktion auf Stress

Chronischer Stress wirkt sich sowohl auf unsere Stimmungslage als auch auf unser Verhalten aus. Wissenschaftler des "Max Planck – Weizmann Labors für experimentelle Neuropsychiatrie und Verhaltensneurogenetik" haben nun die zugrundeliegenden molekularen Mechanismen dafür untersucht, wie das Gehirn eine Reaktion auf Stress einleitet.


Spezielle microRNA-Moleküle regulieren stressbedingtes Verhalten von Mäusen. (Schematisch durch microRNA-Moleküle dargestellte Maus vor Maus-Nervenzellen)

© Tali Wiesel /Weizmann Institute of Science

Erstmalig konnten sie zeigen, dass unterschiedliche Mengen des mikroRNA-Moleküls miR19b in Gehirnregionen, welche für die Stressantwort zuständig sind, das Verhalten von Mäusen beeinflussen. Diese Entdeckung könnte dazu beitragen, die Stressbewältigung in unserem Gehirn besser zu verstehen.

Wissenschaftler um Alon Chen, Direktor am Max-Planck-Institut für Psychiatrie und Leiter des „Max Planck – Weizmann Labors für experimentelle Neuropsychiatrie und Verhaltensneurogenetik“ haben in speziellen Gehirnregionen von chronisch gestressten Mäusen erhöhte Mengen des Moleküls miR19b gefunden.

MicroRNAs wie miR19b sind sehr kurze, nicht-kodierende RNA-Moleküle, die verschiedenste Vorgänge in Zellen regulieren. Die Forscher konnten zeigen, dass miR19b hauptsächlich auf den Adrenorezeptor beta-1 (Adrb1) wirkt. Wenn mehr miR19b vorhanden ist, wird weniger von dem Rezeptor Adrb1 produziert. Adrenorezeptoren werden durch das natürliche Stresshormon Noradrenalin aktiviert und spielen auch bei der Verfestigung von Erinnerungen eine wichtige Rolle.

Beeinflusst demnach eine erhöhte Menge an miR19b die Erinnerung an stressige Ereignisse bei Mäusen? „Mithilfe einer völlig neuen ortsspezifischen Gentechnik und Injektionsmethoden konnten wir exakt nur in denjenigen Gehirnbereichen die Menge an miR19b verändern, die mit der Stressreaktion in Verbindung stehen“, erklärt Alon Chen.

Mäuse mit erhöhter oder verringerter Menge an miR19b – also mit verringerten oder erhöhten Mengen an Adrb1 – zeigten keine Verhaltensänderung während Versuchen zur Ängstlichkeit. Aber Mäuse mit mehr miR19b wiesen abweichende Erinnerung an stressige Situationen auf, die durch ein akustisches Signal angekündigt wurden. Die Mäuse sind weniger erschrocken und konnten besser mit dem Stress umgehen.

„In weiteren Experimenten konnten wir sogar zeigen, dass höhere oder niedrigere Mengen an miR19b nicht nur in den an der Stressreaktion beteiligten Gehirnbereichen die Signale des Noradrenalins beeinflussen, sondern auch in denjenigen Regionen, die an der Verfestigung von Erinnerungen mitwirken“, erläutert Naama Volk, Doktorandin von Alon Chen und Erstautorin der aktuellen Studie.

„Die räumlich begrenzte Regulierung des Rezeptors Adrb1 durch die miR19b ermöglicht angemessene Reaktionen in stressigen Situationen. So können die Tiere ihr Verhalten an wechselnde Begebenheiten anpassen.“ Diese Entdeckung könnte dazu beitragen, die Stressbewältigung in unserem Gehirn besser zu verstehen und aufzuklären, wie unterschiedliche Ereignisse unterschiedliche Reaktionen hervorrufen.


Ansprechpartner

Prof. Dr. Alon Chen
Max-Planck-Institut für Psychiatrie, München

Telefon: +49 89 30622-586

E-Mail: alon_chen@psych.mpg.de


Dr. Anna Niedl

Press and Public Relations
Max-Planck-Institut für Psychiatrie, München

Telefon: +49 89 30622-263

Fax: +49 89 30622-370

E-Mail: anna_niedl@psych.mpg.de


Originalpublikation
Naama Volk, Evan D. Paul, Sharon Haramati, Chen Eitan, Brandon Kenneth-Kouso Fields, Raaya Zwang, Shosh Gil, Christopher A. Lowry and Alon Chen

MicroRNA-19b associates with Ago2 in the amygdala following chronic stress and regulates the adrenergic receptor beta 1.

The Journal of Neuroscience, 4. November 2014

Prof. Dr. Alon Chen | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/8731546/stress_im_gehirn

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Stottern: Stoppsignale im Gehirn verhindern flüssiges Sprechen
12.12.2017 | Max-Planck-Institut für Kognitions- und Neurowissenschaften

nachricht Undercover im Kampf gegen Tuberkulose
12.12.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Stottern: Stoppsignale im Gehirn verhindern flüssiges Sprechen

12.12.2017 | Biowissenschaften Chemie

E-Mobilität: Neues Hybridspeicherkonzept soll Reichweite und Leistung erhöhen

12.12.2017 | Energie und Elektrotechnik

Wie Brände die Tundra langfristig verändern

12.12.2017 | Ökologie Umwelt- Naturschutz