Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stress nach der Geburt verursacht spätere Lernschwäche

21.09.2011
In jungen Mäusen verringern hohe Mengen von Stress-induziertem CRH die spätere Kommunikation zwischen Nervenzellen und damit die Lernleistung

Starker Stress kann sich negativ auf geistige Leistungen wie Lernen und Erinnern auswirken. Wissenschaftlern des Max-Planck-Instituts für Psychiatrie in München zufolge lernen Mäuse im Erwachsenenalter aber zusätzlich schlechter, wenn sie schon direkt nach der Geburt Stress ausgesetzt sind.


Verschiedene Nervenzellen mit ihren rotgefärbten Zellkernen in der Gehirnregion CA3 des Hippokampus. © MPI f. Psychiatrie

Maßgeblich verantwortlich für die dauerhafte Schädigung des Lern- und Erinnerungsvermögens ist das Neuropeptid Corticotropin-releasing Hormon (CRH). Das Peptid bewirkt Änderungen bei Zellhaftungsmolekülen wie Neurexin und Neuroligin. Als Folge ist die Bildung und Plastizität von Synapsen in bestimmten Hirnbereichen beeinträchtigt, so dass die Kommunikation zwischen Nervenzellen verringert ist.

Während der Entwicklung haben hohe Mengen an Stresshormon dramatische Auswirkungen auf das Gehirn, da viele Nervenverbindungen erst nach der Geburt ausgebildet werden. Deshalb haben die Forscher des Max-Planck-Instituts für Psychiatrie untersucht, welche Veränderungen das bei Stress ausgeschüttete Neuropeptid CRH in dieser kritischen Entwicklungsphase im Gehirn von Mäusen auslöst. Dazu stressten sie Muttertiere und ihre Jungen, indem sie ihnen nicht ausreichend Nestmaterial zur Verfügung stellten. Mäuse, die so ab dem zweiten Tag nach ihrer Geburt für eine Woche aufwachsen, zeigen im Erwachsenenalter deutlich schlechteres Lern- und Erinnerungsvermögen.

Mathias Schmidt und seine Kollegen wiesen auf diese Weise nach, dass die Einbußen spezifisch durch die frühe nachgeburtliche Wirkung von CRH in der Hirnregion des Hippokampus ausgelöst werden – einem Lern- und Gedächtnisprozesse besonders wichtigem Gebiet. Werden genetisch veränderte Mäuse, die im Vorderhirn mehr CRH produzieren, unter diesen Bedingungen aufgezogen, lernen sie im späteren Leben schlechter. „Eine erhöhte CRH-Konzentration im Hippokampus kann also später Lerndefizite hervorrufen“, sagt Mathias Schmidt, Arbeitsgruppenleiter am Max-Planck-Institut für Psychiatrie. Gestresste Tiere, denen das Rezeptormolekül für CRH im Hippokampus fehlt und bei denen CRH dort nicht wirken kann, haben dagegen später keine Lernschwierigkeiten.

Die Forscher konnten zahlreiche Veränderungen im Hirngewebe der erwachsenen Tiere identifizieren. So zeigen die Nervenzellen untereinander weniger Synapsen, außerdem ist die Plastizität dieser Synapsen verringert. Beides führt zu einer geringeren Kommunikation zwischen den Zellen und könnte die Lern- und Gedächtniseinbußen erklären. Der Rückgang an Synapsen beruht möglicherweise auf geringeren Mengen an Neurexin und Neuroligin in den Nervenzellen. Die beiden Zellhaftungsmoleküle binden sich gegenseitig und verknüpfen Nervenzellen miteinander. Sie sind somit für die Bildung und Stabilisation von Synapsen unabdingbar. „In den Synapsen kommen Neurexin und Neuroligin gemeinsam mit den Rezeptoren von CRH vor, möglicherweise beeinflusst eine direkte Interaktion der beiden Systeme die Synapsen“, vermutet Schmidt.

Als nächstes wollen die Wissenschaftler untersuchen, ob Hemmstoffe von CRH die durch Stress ausgelösten Vorgänge im Gehirn verhindern oder gar rückgängig machen können. „Dann könnten möglicherweise die bereits existierenden CRH-Antagonisten auch für die Behandlung frühkindlicher Traumata einsetzen werden“, sagt Mathias Schmidt.

Ansprechpartner
Dr. Barbara Meyer
Referentin für Öffentlichkeitsarbeit
Max-Planck-Institut für Psychiatrie, München
Telefon: +49 89 30622-616
Fax: +49 89 30622-348
E-Mail: bmeyer@mpipsykl.mpg.de
Originalveröffentlichung
Xiao-Dong Wang, Gerhard Rammes, Igor Kraev, Miriam Wolf, Claudia Liebl, Sebastian H. Scharf, Courtney J. Rice, Wolfgang Wurst, Florian Holsboer, Jan M. Deussing, Tallie Z. Baram, Michael G. Stewart, Marianne B. Müller and Mathias V. Schmidt

Forebrain CRF1 Modulates Early-Life Stress-Programmed Cognitive Deficits

The Journal of Neuroscience, September 21, 2011; 31(38):13625–13634

Dr. Barbara Meyer | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/4424446/Stress_Geburt_Lernschwaeche

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics