Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stress nach der Geburt verursacht spätere Lernschwäche

21.09.2011
In jungen Mäusen verringern hohe Mengen von Stress-induziertem CRH die spätere Kommunikation zwischen Nervenzellen und damit die Lernleistung

Starker Stress kann sich negativ auf geistige Leistungen wie Lernen und Erinnern auswirken. Wissenschaftlern des Max-Planck-Instituts für Psychiatrie in München zufolge lernen Mäuse im Erwachsenenalter aber zusätzlich schlechter, wenn sie schon direkt nach der Geburt Stress ausgesetzt sind.


Verschiedene Nervenzellen mit ihren rotgefärbten Zellkernen in der Gehirnregion CA3 des Hippokampus. © MPI f. Psychiatrie

Maßgeblich verantwortlich für die dauerhafte Schädigung des Lern- und Erinnerungsvermögens ist das Neuropeptid Corticotropin-releasing Hormon (CRH). Das Peptid bewirkt Änderungen bei Zellhaftungsmolekülen wie Neurexin und Neuroligin. Als Folge ist die Bildung und Plastizität von Synapsen in bestimmten Hirnbereichen beeinträchtigt, so dass die Kommunikation zwischen Nervenzellen verringert ist.

Während der Entwicklung haben hohe Mengen an Stresshormon dramatische Auswirkungen auf das Gehirn, da viele Nervenverbindungen erst nach der Geburt ausgebildet werden. Deshalb haben die Forscher des Max-Planck-Instituts für Psychiatrie untersucht, welche Veränderungen das bei Stress ausgeschüttete Neuropeptid CRH in dieser kritischen Entwicklungsphase im Gehirn von Mäusen auslöst. Dazu stressten sie Muttertiere und ihre Jungen, indem sie ihnen nicht ausreichend Nestmaterial zur Verfügung stellten. Mäuse, die so ab dem zweiten Tag nach ihrer Geburt für eine Woche aufwachsen, zeigen im Erwachsenenalter deutlich schlechteres Lern- und Erinnerungsvermögen.

Mathias Schmidt und seine Kollegen wiesen auf diese Weise nach, dass die Einbußen spezifisch durch die frühe nachgeburtliche Wirkung von CRH in der Hirnregion des Hippokampus ausgelöst werden – einem Lern- und Gedächtnisprozesse besonders wichtigem Gebiet. Werden genetisch veränderte Mäuse, die im Vorderhirn mehr CRH produzieren, unter diesen Bedingungen aufgezogen, lernen sie im späteren Leben schlechter. „Eine erhöhte CRH-Konzentration im Hippokampus kann also später Lerndefizite hervorrufen“, sagt Mathias Schmidt, Arbeitsgruppenleiter am Max-Planck-Institut für Psychiatrie. Gestresste Tiere, denen das Rezeptormolekül für CRH im Hippokampus fehlt und bei denen CRH dort nicht wirken kann, haben dagegen später keine Lernschwierigkeiten.

Die Forscher konnten zahlreiche Veränderungen im Hirngewebe der erwachsenen Tiere identifizieren. So zeigen die Nervenzellen untereinander weniger Synapsen, außerdem ist die Plastizität dieser Synapsen verringert. Beides führt zu einer geringeren Kommunikation zwischen den Zellen und könnte die Lern- und Gedächtniseinbußen erklären. Der Rückgang an Synapsen beruht möglicherweise auf geringeren Mengen an Neurexin und Neuroligin in den Nervenzellen. Die beiden Zellhaftungsmoleküle binden sich gegenseitig und verknüpfen Nervenzellen miteinander. Sie sind somit für die Bildung und Stabilisation von Synapsen unabdingbar. „In den Synapsen kommen Neurexin und Neuroligin gemeinsam mit den Rezeptoren von CRH vor, möglicherweise beeinflusst eine direkte Interaktion der beiden Systeme die Synapsen“, vermutet Schmidt.

Als nächstes wollen die Wissenschaftler untersuchen, ob Hemmstoffe von CRH die durch Stress ausgelösten Vorgänge im Gehirn verhindern oder gar rückgängig machen können. „Dann könnten möglicherweise die bereits existierenden CRH-Antagonisten auch für die Behandlung frühkindlicher Traumata einsetzen werden“, sagt Mathias Schmidt.

Ansprechpartner
Dr. Barbara Meyer
Referentin für Öffentlichkeitsarbeit
Max-Planck-Institut für Psychiatrie, München
Telefon: +49 89 30622-616
Fax: +49 89 30622-348
E-Mail: bmeyer@mpipsykl.mpg.de
Originalveröffentlichung
Xiao-Dong Wang, Gerhard Rammes, Igor Kraev, Miriam Wolf, Claudia Liebl, Sebastian H. Scharf, Courtney J. Rice, Wolfgang Wurst, Florian Holsboer, Jan M. Deussing, Tallie Z. Baram, Michael G. Stewart, Marianne B. Müller and Mathias V. Schmidt

Forebrain CRF1 Modulates Early-Life Stress-Programmed Cognitive Deficits

The Journal of Neuroscience, September 21, 2011; 31(38):13625–13634

Dr. Barbara Meyer | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/4424446/Stress_Geburt_Lernschwaeche

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Regenbogenfarben enthüllen Werdegang von Zellen
25.09.2017 | Technische Universität Dresden

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

Junge Physiologen Tagen in Jena

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

25.09.2017 | Messenachrichten

Fraunhofer ISE steigert Weltrekord für multikristalline Siliciumsolarzelle auf 22,3 Prozent

25.09.2017 | Energie und Elektrotechnik

Die Parkinson-Krankheit verstehen – und stoppen: aktuelle Fortschritte

25.09.2017 | Medizin Gesundheit