Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Streifen für den Zebrafisch

29.08.2014

Der Zebrafisch, ein kleiner Süßwasserfisch, verdankt seinen Namen einem auffallenden Muster von blauen und goldenen Längsstreifen.

Drei Typen von Pigmentzellen, schwarze, silbern reflektierende, und gelbe, tauchen während des Wachstums in der Haut von jungen Zebrafischen auf und ordnen sich in einem mehrschichtigen Mosaik an. Bisher wusste man, dass alle Zelltypen miteinander wechselwirken müssen, um ordentliche Streifen zu entwickeln.


Der Zebrafisch (Danio rerio) verdankt seinen Namen dem sich wiederholenden Muster von blauen und goldenen Längsstreifen. Prateek Malhawar / Max-Planck-Institut für Entwicklungsbiologie


Gelbe Pigmentzellen (ganz rechts im Bild) bedecken die gesamte Haut des Fischs und nehmen dabei zwei unterschiedliche Zellformen an. Prateek Malhawar / Max-Planck-Institut für Entwicklungsbiologie

Die Herkunft der Zellen im Embryo blieb jedoch ein Rätsel. Wissenschaftler am Max-Planck-Institut für Entwicklungsbiologie in Tübingen haben entdeckt, wo diese Zellen entstehen und wie sie das Zebra-Muster bilden.

Die Schönheit von Lebewesen erstaunt Dichter, Philosophen und Wissenschaftler gleichermaßen. Die Nobelpreisträgerin Christiane Nüsslein-Volhard, Direktorin am Max-Planck-Institut für Entwicklungsbiologie in Tübingen, ist schon seit langem von der Biologie, die Farbmustern bei Tieren zu Grunde liegt, fasziniert. Ihre Arbeitsgruppe untersucht den Zebrafisch als Modellorganismus, um die genetischen Grundlagen der Entwicklung von Tieren zu verstehen.

Neue Ergebnisse aus dem Nüsslein-Volhard-Labor, die in der Zeitschrift Science veröffentlicht wurden, zeigen, dass die gelben Pigmentzellen ihre Form drastisch ändern, um das Streifenmuster einzufärben. "Wir waren sehr überrascht, dieses Zellverhalten beobachten zu können, das haben wir auf Grund dessen, was wir bisher über die Bildung der Farbmuster wussten, keineswegs erwartet", sagt Prateek Mahalwar, Erstautor dieser Arbeit.

Diese Untersuchungen ergänzen die erst im Juni 2014 in Nature Cell Biology erschienenen Ergebnisse aus dem gleichen Labor, in denen das Verhalten der silbernen und der schwarzen Zellen verfolgt wurde. Beide Studien beschreiben sorgfältige und langwierige Experimente, um den zellulären Vorgängen während der Streifenbildung auf die Spur zu kommen. Einzelne junge Fische, die mit fluoreszierenden Farbstoffen markierte Pigmentzellvorläufer in sich tragen, wurden bis zu drei Wochen lang täglich mikroskopiert.

Dadurch konnten die Wissenschaftler die Vermehrung, Wanderung und Ausbreitung einzelner Zellen und ihrer Vorläufer während des vollständigen Musterbildungsprozesses im lebenden und wachsenden Tier verfolgen. "Wir haben dafür ein besonders schonendes Verfahren entwickelt, um einzelne Fische wiederholt über solch lange Zeiträume untersuchen zu können. Dazu haben wir ein neuartiges Mikroskop benutzt, das es ermöglicht, die schädlichen Einflüsse der Beleuchtung mit Fluoreszenz-anregendem Licht auf ein Minimum zu beschränken", sagt Ajeet Singh, Erstautor der Studie im Juni.

Diese Analyse hat überraschend gezeigt, dass die drei Pigmentzelltypen auf vollkommen unterschiedlichen Wegen in die Haut gelangen: Aus einer Population von pluripotenten dorsalen Zellen entstehen larvale gelbe Zellen, die die Haut des Embryos bedecken. Diese fangen an sich zu Beginn der Metamorphose, also der Wandlung von Larve zu Fisch, zu teilen, wenn der Fisch etwa 2 – 3 Wochen alt ist. Dagegen werden die schwarzen und silbernen Zellen von Stammzellen in Nervenknoten des peripheren Nervensystems gebildet, die in jedem Segment nahe dem Rückenmark liegen. Die schwarzen Zellen gelangen entlang der segmentalen Nerven in die Haut, wo sie in der zukünftigen Streifenregion auftauchen. Die silbernen Zellen dagegen durchdringen den Längsschlitz, der die seitlichen Muskelpakete trennt, und vermehren und breiten sich dann in der Haut aus.

Brigitte Walderich, Mitautorin des Science-Artikels, hat Zelltransplantationen durchgeführt, um die gelben Zellen verfolgen zu können, und erklärt: "Mein Ziel war es, kleine Gruppen von fluoreszierend markierten Zellen im Embryo zu erzeugen, die sich dann während der Entwicklung des Fisches über larvale und jugendliche Stadien verfolgen ließen, um die Herkunft der gelben Zellen zu verstehen. Wir waren sehr überrascht zu sehen, dass diese sich als differenzierte Zellen vermehren und die Haut des Fisches bedecken, bevor die silbernen und schwarzen Zellen erscheinen, um die Streifen zu bilden."

Erstaunlicherweise verändern sowohl die silbernen als auch die gelben Zellen ihre Form und Färbung, je nach dem, mit welchen anderen Pigmentzellen sie in Kontakt treten. Die gelben Zellen, die auf den dichten silbernen Zellen des hellen Streifens liegen, werden kompakt und färben ihn golden; dagegen bilden sie über den schwarzen Zellen des dunklen Streifens blasse Zellen mit langen Fortsätzen. Die silbernen Zellen überziehen die schwarzen als loses Netzwerk, wodurch die blaue Farbe der dunklen Streifen zustande kommt. Sie verwandeln sich wieder in die dichte Form, um in einem gewissen Abstand vom ersten hellen Streifen einen weiteren hellen Streifen zu bilden. Auf diese Weise kommt die Abfolge von hellen und dunklen Streifen zustande. Die präzise Überlagerung der kompakten silbernen und gelben Zellen in den hellen Streifen und deren loses Netzwerk über den schwarzen Zellen des dunklen Streifens bewirken den scharfen Kontrast zwischen der blauen und goldenen Farbe des Musters.

Die Autoren vermuten, dass durch Abwandlungen des Verhaltens der Farbzellen verschiedene Muster gebildet werden können und man damit die Entstehung der großen Vielfalt an Farbmustern bei Fischen erklären kann. "Aus diesen Untersuchungen haben wir gelernt, wie das Streifen-Muster im Zebrafisch entsteht. Sie geben uns aber auch Anregungen dazu, über die Entstehung von Farbmustern bei Tieren zu spekulieren, die der direkten Beobachtung während der Entwicklung nicht zugänglich sind, zum Beispiel Pfauen, Tiger oder Zebras", sagt Christiane Nüsslein-Volhard.

Weitere Informationen:

http://youtu.be/TXtC0B4sJZY?list=UUC7upLrN4noc4Wnfh6OfQJg

Nadja Winter | Max-Planck-Institut
Weitere Informationen:
http://eb.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie