Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Streifen für den Zebrafisch

29.08.2014

Der Zebrafisch, ein kleiner Süßwasserfisch, verdankt seinen Namen einem auffallenden Muster von blauen und goldenen Längsstreifen.

Drei Typen von Pigmentzellen, schwarze, silbern reflektierende, und gelbe, tauchen während des Wachstums in der Haut von jungen Zebrafischen auf und ordnen sich in einem mehrschichtigen Mosaik an. Bisher wusste man, dass alle Zelltypen miteinander wechselwirken müssen, um ordentliche Streifen zu entwickeln.


Der Zebrafisch (Danio rerio) verdankt seinen Namen dem sich wiederholenden Muster von blauen und goldenen Längsstreifen. Prateek Malhawar / Max-Planck-Institut für Entwicklungsbiologie


Gelbe Pigmentzellen (ganz rechts im Bild) bedecken die gesamte Haut des Fischs und nehmen dabei zwei unterschiedliche Zellformen an. Prateek Malhawar / Max-Planck-Institut für Entwicklungsbiologie

Die Herkunft der Zellen im Embryo blieb jedoch ein Rätsel. Wissenschaftler am Max-Planck-Institut für Entwicklungsbiologie in Tübingen haben entdeckt, wo diese Zellen entstehen und wie sie das Zebra-Muster bilden.

Die Schönheit von Lebewesen erstaunt Dichter, Philosophen und Wissenschaftler gleichermaßen. Die Nobelpreisträgerin Christiane Nüsslein-Volhard, Direktorin am Max-Planck-Institut für Entwicklungsbiologie in Tübingen, ist schon seit langem von der Biologie, die Farbmustern bei Tieren zu Grunde liegt, fasziniert. Ihre Arbeitsgruppe untersucht den Zebrafisch als Modellorganismus, um die genetischen Grundlagen der Entwicklung von Tieren zu verstehen.

Neue Ergebnisse aus dem Nüsslein-Volhard-Labor, die in der Zeitschrift Science veröffentlicht wurden, zeigen, dass die gelben Pigmentzellen ihre Form drastisch ändern, um das Streifenmuster einzufärben. "Wir waren sehr überrascht, dieses Zellverhalten beobachten zu können, das haben wir auf Grund dessen, was wir bisher über die Bildung der Farbmuster wussten, keineswegs erwartet", sagt Prateek Mahalwar, Erstautor dieser Arbeit.

Diese Untersuchungen ergänzen die erst im Juni 2014 in Nature Cell Biology erschienenen Ergebnisse aus dem gleichen Labor, in denen das Verhalten der silbernen und der schwarzen Zellen verfolgt wurde. Beide Studien beschreiben sorgfältige und langwierige Experimente, um den zellulären Vorgängen während der Streifenbildung auf die Spur zu kommen. Einzelne junge Fische, die mit fluoreszierenden Farbstoffen markierte Pigmentzellvorläufer in sich tragen, wurden bis zu drei Wochen lang täglich mikroskopiert.

Dadurch konnten die Wissenschaftler die Vermehrung, Wanderung und Ausbreitung einzelner Zellen und ihrer Vorläufer während des vollständigen Musterbildungsprozesses im lebenden und wachsenden Tier verfolgen. "Wir haben dafür ein besonders schonendes Verfahren entwickelt, um einzelne Fische wiederholt über solch lange Zeiträume untersuchen zu können. Dazu haben wir ein neuartiges Mikroskop benutzt, das es ermöglicht, die schädlichen Einflüsse der Beleuchtung mit Fluoreszenz-anregendem Licht auf ein Minimum zu beschränken", sagt Ajeet Singh, Erstautor der Studie im Juni.

Diese Analyse hat überraschend gezeigt, dass die drei Pigmentzelltypen auf vollkommen unterschiedlichen Wegen in die Haut gelangen: Aus einer Population von pluripotenten dorsalen Zellen entstehen larvale gelbe Zellen, die die Haut des Embryos bedecken. Diese fangen an sich zu Beginn der Metamorphose, also der Wandlung von Larve zu Fisch, zu teilen, wenn der Fisch etwa 2 – 3 Wochen alt ist. Dagegen werden die schwarzen und silbernen Zellen von Stammzellen in Nervenknoten des peripheren Nervensystems gebildet, die in jedem Segment nahe dem Rückenmark liegen. Die schwarzen Zellen gelangen entlang der segmentalen Nerven in die Haut, wo sie in der zukünftigen Streifenregion auftauchen. Die silbernen Zellen dagegen durchdringen den Längsschlitz, der die seitlichen Muskelpakete trennt, und vermehren und breiten sich dann in der Haut aus.

Brigitte Walderich, Mitautorin des Science-Artikels, hat Zelltransplantationen durchgeführt, um die gelben Zellen verfolgen zu können, und erklärt: "Mein Ziel war es, kleine Gruppen von fluoreszierend markierten Zellen im Embryo zu erzeugen, die sich dann während der Entwicklung des Fisches über larvale und jugendliche Stadien verfolgen ließen, um die Herkunft der gelben Zellen zu verstehen. Wir waren sehr überrascht zu sehen, dass diese sich als differenzierte Zellen vermehren und die Haut des Fisches bedecken, bevor die silbernen und schwarzen Zellen erscheinen, um die Streifen zu bilden."

Erstaunlicherweise verändern sowohl die silbernen als auch die gelben Zellen ihre Form und Färbung, je nach dem, mit welchen anderen Pigmentzellen sie in Kontakt treten. Die gelben Zellen, die auf den dichten silbernen Zellen des hellen Streifens liegen, werden kompakt und färben ihn golden; dagegen bilden sie über den schwarzen Zellen des dunklen Streifens blasse Zellen mit langen Fortsätzen. Die silbernen Zellen überziehen die schwarzen als loses Netzwerk, wodurch die blaue Farbe der dunklen Streifen zustande kommt. Sie verwandeln sich wieder in die dichte Form, um in einem gewissen Abstand vom ersten hellen Streifen einen weiteren hellen Streifen zu bilden. Auf diese Weise kommt die Abfolge von hellen und dunklen Streifen zustande. Die präzise Überlagerung der kompakten silbernen und gelben Zellen in den hellen Streifen und deren loses Netzwerk über den schwarzen Zellen des dunklen Streifens bewirken den scharfen Kontrast zwischen der blauen und goldenen Farbe des Musters.

Die Autoren vermuten, dass durch Abwandlungen des Verhaltens der Farbzellen verschiedene Muster gebildet werden können und man damit die Entstehung der großen Vielfalt an Farbmustern bei Fischen erklären kann. "Aus diesen Untersuchungen haben wir gelernt, wie das Streifen-Muster im Zebrafisch entsteht. Sie geben uns aber auch Anregungen dazu, über die Entstehung von Farbmustern bei Tieren zu spekulieren, die der direkten Beobachtung während der Entwicklung nicht zugänglich sind, zum Beispiel Pfauen, Tiger oder Zebras", sagt Christiane Nüsslein-Volhard.

Weitere Informationen:

http://youtu.be/TXtC0B4sJZY?list=UUC7upLrN4noc4Wnfh6OfQJg

Nadja Winter | Max-Planck-Institut
Weitere Informationen:
http://eb.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pflanzlicher Wirkstoff lässt Wimpern wachsen
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Wolkenbildung: Wie Feldspat als Gefrierkeim wirkt
09.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie

Speicherdauer von Qubits für Quantencomputer weiter verbessert

09.12.2016 | Physik Astronomie