Strategie der Blaualgen wirkt seit 3,5 Milliarden Jahren: RUB-Forscher untersuchen Flexibilität bei Lichtstress

Gleich drei Gene für eine einzige Untereinheit eines Elektronen übertragenden Proteinkomplexes hat das Cyanobakterium Synechocystis- und damit höheren Pflanzen etwas voraus.

Der Proteinkomplex ist neben der Zellatmung auch für die Photosynthese von Bedeutung. Je nach Lichtangebot greift das Cyanobakterium, auch Blaualge genannt, auf das passende Gen zurück. Mit dieser Strategie sichert es sich seit 3,5 Milliarden Jahren sein Überleben, indem es sich optimal wechselnden Umweltbedingungen anpasst. Für die Anpassung an schwaches oder starkes Licht benötigt es weniger als 90 Minuten.

Diese Entdeckung haben internationale Biologen um Prof. Dr. Matthias Rögner (Lehrstuhl für Biochemie der Pflanzen der Ruhr-Universität) gemacht. Sie berichten im „Journal of Biological Chemistry“.

Cyanobakterien haben die Photosynthese „erfunden“

Die Cyanobakterien dienen Biologen als Modellorganismen zur Aufklärung so grundlegender Prozesse wie der pflanzlichen Photosynthese – der Umwandlung von Lichtenergie in gebundene „chemische“ Energie, z.B. in Form von Zucker oder Stärke. Cyanobakterien sind erdgeschichtlich die ersten Organismen, die den Prozess der Wasserspaltung, bei der Sauerstoff freigesetzt wird, durch Sonnenlicht vor ca. 3,5 Milliarden Jahren „erfunden“ haben. „Daher verdanken wir ihnen die Entstehung alles 'höheren' Lebens auf der Erde einschließlich der des Menschen“, erklärt Prof. Rögner: „Praktisch jedes zweite Sauerstoffatom, das wir einatmen, geht auf den Prozess der Wasserspaltung durch Cyanobakterien zurück.“

Überleben durch Anpassung

Dennoch ist die molekulare Grundlage für das erfolgreiche Überleben dieser Organismen über diese lange Zeit nicht ausreichend geklärt. „Eine wichtige Voraussetzung für ihre Robustheit waren sicherlich ihr einfacher zellulärer Aufbau und ihre Anpassungsfähigkeit an rasch wechselnde Umweltbedingungen, z.B. an drastische Veränderungen in der Lichtzufuhr“, so Prof. Rögner. Er und seine Kollegen haben nun am Beispiel der Lichtzufuhr untersucht, wie es der Blaualge gelingt sich anzupassen.

Drei Gene für eine Proteinuntereinheit

Im am besten charakterisierten Cyanobakterium Synechocystis PCC 6803 (Abb. 1) fanden die Forscher für eine einzige Untereinheit des Elektronen übertragenden Cytochrom b6f-Proteinkomplexes drei Gene – im Gegensatz dazu ist der Bauplan der sieben anderen Untereinheiten dieses Komplexes jeweils nur in einem einzigen Gen verschlüsselt. Der Komplex spielt in Blaualgen – anders als in höheren Pflanzen – sowohl für den Elektronentransport der Photosynthese als auch für die Atmung dieser Zellen eine Schlüsselrolle und ist in der Photosynthese- (bzw. Thylakoid-)membran (TM) lokalisiert (Abb. 2). „Unsere Untersuchungen am Wildtyp und an eigens erzeugten Mutanten haben ergeben, dass diese 'Genfamilie' ein präzises Instrumentarium darstellt, mit dem sich die Zelle rasch an veränderte Lichtbedingungen anpassen kann“, erklärt Prof. Rögner: Während Genkopie 1 hauptsächlich unter Normallicht abgelesen wird, aktiviert die Zelle Genkopie 2 bei starkem Licht, was ihr das Überleben sichert. Dieses Umschalten erfolgt in weniger als 90 Minuten, wie über RNA-Analyse gezeigt werden konnte.

Genkopie 3 wirkt aus der Ferne

Genkopie 3, über die am wenigsten bekannt war, ist offensichtlich für die Regulation dieser Vorgänge mit verantwortlich. „Erstaunlicherweise wird es gar nicht in den Komplex integriert, sondern ist ausschließlich in der äußeren Cytoplasmamembran (CM, Abb. 2) zu finden, nicht in der Thylakoidmembran“, beschreibt Prof. Rögner. Wie die Genkopie 3 aus der „Ferne“ in den Prozess eingreifen kann gibt den Forschern momentan noch Rätsel auf. Mit Genkopie 3 allein kann die Zelle nicht überleben, aber ohne sie funktioniert die Regulation nicht optimal.

Alle drei Gene sind nötig

„Insgesamt zeigen die Ergebnisse sehr deutlich, dass die Zelle für eine optimale Funktion alle drei Gene braucht und dass nur dieser Mix aus Genen eine rasche und effiziente Anpassung an kurzfristige Änderungen der Umweltbedingungen – insbesondere Licht – ermöglicht“, fasst Prof. Rögner zusammen. Während höhere Pflanzen für jede Untereinheit des Cytochrom b6f-Komplexes nur eine Genkopie besitzen, sei die Existenz solcher „Genfamilien“ (auch beim wasserspaltenden Photosystem 2) sicherlich ein wesentlicher Grund für die Flexibilität und das Überleben der Cyanobakterien seit 3,5 Milliarden Jahren auch unter extremen Bedingungen. „Dies hat letztendlich die Evolution und die Veränderung der Atmosphäre unseres Planeten seit der Urzeit erst ermöglicht.“

Titelaufnahme

Yuichi Tsunoyama, Gabor Bernat, Nina G. Dyczmons, Matthias Rögner: Multiple Rieske Proteins Enable Short- and Long-term Light Adaptation of Synechocystis sp. PCC 6803. In: Journal of Biological Chemistry, Vol. 284, Issue 41, 27875-27883, 9.10.2009, DOI: 10.1074/jbc.M109.011189

Weitere Informationen

Prof. Dr. Matthias Rögner, Lehrstuhl für Biochemie der Pflanzen, Fakultät für Biologie und Biotechnologie der Ruhr-Universität Bochum, Tel. 0234/32-23634

matthias.roegner@rub.de

Redaktion: Meike Drießen

Media Contact

Dr. Josef König idw

Weitere Informationen:

http://www.ruhr-uni-bochum.de/

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Nanofasern-befreien Wasser von gefährlichen Farbstoffen

Farbstoffe, wie sie zum Beispiel in der Textilindustrie verwendet werden, sind ein großes Umweltproblem. An der TU Wien entwickelte man nun effiziente Filter dafür – mit Hilfe von Zellulose-Abfällen. Abfall…

Entscheidender Durchbruch für die Batterieproduktion

Energie speichern und nutzen mit innovativen Schwefelkathoden. HU-Forschungsteam entwickelt Grundlagen für nachhaltige Batterietechnologie. Elektromobilität und portable elektronische Geräte wie Laptop und Handy sind ohne die Verwendung von Lithium-Ionen-Batterien undenkbar. Das…

Wenn Immunzellen den Körper bewegungsunfähig machen

Weltweit erste Therapie der systemischen Sklerose mit einer onkologischen Immuntherapie am LMU Klinikum München. Es ist ein durchaus spektakulärer Fall: Nach einem mehrwöchigen Behandlungszyklus mit einem immuntherapeutischen Krebsmedikament hat ein…

Partner & Förderer