Wissenschaftler am GSI Helmholtzzentrum für Schwerionenforschung haben erstmals direkt die Reparaturvorgänge bei DNA-Schäden beobachtet, nachdem menschliche Zellen mit Ionen bestrahlt wurden.
DNA-Schäden speziell durch Ionenstrahlen ermöglichen neue grundlegende Erkenntnisse darüber, wie die Reparatur in menschlichen Zellen generell abläuft. Das genaue Verständnis der Reparaturabläufe hilft Wissenschaftlern, die Entstehung von Krebs besser nachzuvollziehen und künftige Behandlungsmöglichkeiten zu entwickeln. Krebs kann entstehen, wenn DNA-Schäden fehlerhaft repariert werden.
Die DNA, die das gesamte menschliche Erbgut enthält, ist in mehreren so genannten Chromosomen zusammengefasst. Die GSI-Wissenschaftler haben nun beobachtet, dass Proteine, die für die Reparatur verantwortlich sind, zur Schadensstelle hinwandern. Größere Bewegungen der Chromosomen sind für die Reparatur daher nicht nötig.
Deshalb ist die Wahrscheinlichkeit am größten, dass es bei Reparaturfehlern zu einem Austausch von DNA-Bruchstücken zwischen benachbarten Chromosomen kommt. Dies führt zu einer Veränderung der Chromosomen - eine häufige Ursache für die Entstehung von Krebs.
Ionenstrahlen, die DNA-Schäden verursachen, schädigen diese in einem räumlich begrenzten Bereich. Daher können die Wissenschaftler anschließend die Reparaturvorgänge in der Zelle an dieser Stelle genau beobachten. Andere Strahlungsarten, wie zum Beispiel Röntgenstrahlung, erzeugen Schäden, die über die gesamte Zelle verteilt sind. Dadurch wird es für die Wissenschaftler im Einzelnen schwieriger nachzuvollziehen, wie der Reparaturvorgang an einem Schadenspunkt vor sich geht.
Die GSI-Wissenschaftler benutzen für ihre Beobachtungen einen neu entwickelten Messplatz am Beschleuniger des GSI. Dort können sie kultivierte lebende menschliche Zellen mit Ionen bestrahlen. Mit speziellen Mikroskopen beobachten sie die Reparaturvorgänge in den geschädigten Zellen unmittelbar nach der Bestrahlung mehrere Stunden lang. Dazu werden die Proteine, die für die Reparatur verantwortlich sind, so mit speziellen fluoreszierenden Farbstoffen versehen, dass sie im Mikroskop sichtbar sind.
Die Ergebnisse sind im Fachjournal "Proceedings of the National Academy of Sciences USA" publiziert. B. Jakob, J. Splinter, M. Durante and G. Taucher-Scholz, Live cell microscopy analysis of radiation-induced DNA double-strand break motion. Proc. Natl. Acad. Sci. USA, in press (2009)
Dr. Ingo Peter | idw
Weitere Informationen:
http://www.gsi.de/portrait/Pressemeldungen/19022009.html
http://www.gsi.de
Weitere Berichte zu: > Behandlungsmöglichkeiten > Chromosom > Chromosom 15 > DNA > DNA-Schaden > Erbgut > GSI > GSI-Wissenschaftler > Ionen > Ionenstrahlen > Proceedings of the National Academy of Sciences USA > Protein > Röntgenstrahlung > Schwerionenforschung > Strahlenschäden > Strahlungsart > Zelle > fluoreszierende Farbstoffen > menschliche Zellen
Multifunktionaler Mikroschwimmer transportiert Fracht und zerstört sich selbst
26.04.2018 | Max-Planck-Institut für Intelligente Systeme
Der lange Irrweg der ADP Ribosylierung
26.04.2018 | Max-Planck-Institut für Biologie des Alterns
Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...
Das Kleben der Zellverbinder von Hocheffizienz-Solarzellen im industriellen Maßstab ist laut dem Fraunhofer-Institut für Solare Energiesysteme ISE und dem Anlagenhersteller teamtechnik marktreif. Als Ergebnis des gemeinsamen Forschungsprojekts »KleVer« ist die Klebetechnologie inzwischen so weit ausgereift, dass sie als alternative Verschaltungstechnologie zum weit verbreiteten Weichlöten angewendet werden kann. Durch die im Vergleich zum Löten wesentlich niedrigeren Prozesstemperaturen können vor allem temperatursensitive Hocheffizienzzellen schonend und materialsparend verschaltet werden.
Dabei ist der Durchsatz in der industriellen Produktion nur geringfügig niedriger als beim Verlöten der Zellen. Die Zuverlässigkeit der Klebeverbindung wurde...
Auf der Hannover Messe 2018 präsentiert die Bundesanstalt für Materialforschung und -prüfung (BAM), wie Astronauten in Zukunft Werkzeug oder Ersatzteile per 3D-Druck in der Schwerelosigkeit selbst herstellen können. So können Gewicht und damit auch Transportkosten für Weltraummissionen deutlich reduziert werden. Besucherinnen und Besucher können das innovative additive Fertigungsverfahren auf der Messe live erleben.
Pulverbasierte additive Fertigung unter Schwerelosigkeit heißt das Projekt, bei dem ein Bauteil durch Aufbringen von Pulverschichten und selektivem...
At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.
Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...
Ingenieure des Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS) in Dresden haben in Kooperation mit Industriepartnern ein innovatives Verfahren...
Anzeige
Anzeige
Konferenz »Encoding Cultures. Leben mit intelligenten Maschinen« | 27. & 28.04.2018 ZKM | Karlsruhe
26.04.2018 | Veranstaltungen
Konferenz zur Marktentwicklung von Gigabitnetzen in Deutschland
26.04.2018 | Veranstaltungen
infernum-Tag 2018: Digitalisierung und Nachhaltigkeit
24.04.2018 | Veranstaltungen
Weltrekord an der Uni Paderborn: Optische Datenübertragung mit 128 Gigabits pro Sekunde
26.04.2018 | Informationstechnologie
Multifunktionaler Mikroschwimmer transportiert Fracht und zerstört sich selbst
26.04.2018 | Biowissenschaften Chemie
Berner Mars-Kamera liefert erste farbige Bilder vom Mars
26.04.2018 | Physik Astronomie