Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Stoppuhr im Gehirn

06.03.2009
Wissenschaftler aus Freiburg untersuchen mit neuen Methoden die Signalverarbeitung im Gehirn

Das Gehirn ist ein hochkomplexes Informationsverarbeitungssystem. Wenn wir sehen, hören, oder uns erinnern, werden Informationen in Form von elektrischen Signalen von Nervenzelle zu Nervenzelle weitergegeben - nur so können wir Bilder erkennen und Sprache verstehen.

In welcher Form aber sind die Informationen in der Folge neuronaler Impulsen enthalten? Kommt es auf die Menge der Impulse an oder auf deren genaues Timing? Diese zentrale Frage der Hirnforschung haben Wissenschaftler um Clemens Boucsein, Bernstein Zentrum für Computational Neuroscience und Universität Freiburg, in Zusammenarbeit mit Martin Nawrot, Bernstein Zentrum für Computational Neuroscience Berlin, am Beispiel der Großhirnrinde mit neuen Methoden genauer untersucht.

Sie zeigten: die Nervenzellen reagieren mit einer sehr viel höheren zeitlichen Präzision, als bisher angenommen. Ihre Arbeit wurde in der Fachzeitschrift "Frontiers in Neural Circuits" publiziert.

Alle Nervenzellen übertragen Informationen als eine Folge neuronaler Impulse. Aber die Art und Weise, wie sie Informationen in diesen Signalen verschlüsseln und wie diese von nachgeschalteten Zellen ausgelesen werden, unterscheidet sich erheblich. Einige Sinneszellen und Nervenzellen, die Muskeln anregen, nutzen einen so genannten "Raten Code": je mehr Impulse pro Zeiteinheit, desto heller das wahrgenommene Licht, lauter der Ton oder desto stärker die verursachte Muskelkontraktion. Andere Zellen wiederum nutzen einen "zeitlichen Code": hierbei kommt es nicht auf die Zahl der Impulse an, sondern auf deren exaktes Timing - darauf, ob eine Zelle einen Impuls wenige Millisekunden vor oder nach einer anderen Zelle sendet. Boucsein und seine Kollegen untersuchten, welche der beiden Strategien Zellen in der Großhirnrinde nutzen.

Jede Zelle in der Großhirnrinde erhält viele Signale von anderen, vorgeschalteten Zellen. Wenn Zellen in der Großhirnrinde einen "zeitlichen" Code nutzten, müssten sie auch in der Lage sein, mit hoher zeitlicher Präzision auf diese Eingangssignale zu reagieren. Um dies zu überprüfen, haben sich Boucsein und seine Kollegen einer neuen Methode bedient, die in ihrem Labor entwickelt wurde. Im Gewebeschnitt messen sie die elektrische Aktivität einer Zelle, während sie deren vorgeschaltete Zellen in einer präzise definierten zeitlichen Abfolge aktivieren. Sie nutzen dabei eine chemische Komponente, die unter dem Einfluss von Licht freigesetzt wird und die Nervenzellen anregt. Mit einem Laser und einem Spiegelsystem werden auf diese Weise die vorgeschalteten Zellen immer wieder in der genau gleichen zeitlichen Abfolge angeschaltet. "Wir waren überrascht, wie reproduzierbar und zeitlich exakt die nachgeschaltete Zelle auf die Folge von Eingangssignalen reagiert", sagt Boucsein. Das ist alles andere als selbstverständlich. Jedes Signal der vorgeschalteten Zelle muss an langen zellulären Fortsätzen entlanglaufen, auf die nachgeschaltete Zelle übertragen und dort wiederum an den Fortsätzen zum Zellkörper transportiert werden. Bei all diesen Prozessen könnte es - theoretisch - zu zeitlichen Ungenauigkeiten kommen. Dass die Zellen trotzdem so akkurat reagieren, zeigt: sie sind für einen Code, bei dem es auf das exakte Timing ankommt, wie geschaffen. Würden Zellen der Großhirnrinde hingegen einen Raten-Code nutzen, würden sie nach diesen Befunden eher unzuverlässig arbeiten.

Originalveröffentlichung: Nawrot MP, Schnepel P, Aertsen A, Boucsein C. Precisely timed signal transmission in neocortical networks with reliable intermediate-range projections.
Front Neural Circuits. 2009;3:1. Epub 2009 Feb 10.
doi:10.3389/neuro.04.001.2009
Kontaktinformation:
Dr. Clemens Boucsein
Abt. Neurobiologie & Biophysik
Institut für Biologie III
Albert-Ludwigs-Universität Freiburg
Email: boucsein@biologie.uni-freiburg.de
Tel: 0761 203 2862

Dr. Katrin Weigmann | idw
Weitere Informationen:
http://www.bccn.uni-freiburg.de/
http://www.brainworks.uni-freiburg.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Proteine zueinander finden
21.02.2017 | Charité – Universitätsmedizin Berlin

nachricht Kleine Moleküle gegen altersbedingte Erkrankungen
21.02.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Im Focus: Innovative Antikörper für die Tumortherapie

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig von diesen teuren Medikamenten profitieren, wird intensiv an deren Verbesserung gearbeitet. Forschern um Prof. Thomas Valerius an der Christian Albrechts Universität Kiel gelang es nun, innovative Antikörper mit verbesserter Wirkung zu entwickeln.

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig...

Im Focus: Durchbruch mit einer Kette aus Goldatomen

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des Wärmetransportes

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: Hoch wirksamer Malaria-Impfstoff erfolgreich getestet

Tübinger Wissenschaftler erreichen Impfschutz von bis zu 100 Prozent – Lebendimpfstoff unter kontrollierten Bedingungen eingesetzt

Tübinger Wissenschaftler erreichen Impfschutz von bis zu 100 Prozent – Lebendimpfstoff unter kontrollierten Bedingungen eingesetzt

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Der Lkw der Zukunft kommt ohne Fahrer aus

21.02.2017 | Veranstaltungen

Physikerinnen und Physiker diskutieren in Bremen über aktuelle Grenzen der Physik

21.02.2017 | Veranstaltungen

Kniffe mit Wirkung in der Biotechnik

21.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit den Betriebsräten Sozialpläne

21.02.2017 | Unternehmensmeldung

Der Lkw der Zukunft kommt ohne Fahrer aus

21.02.2017 | Veranstaltungsnachrichten

Zur Sprache gebracht: Und das intelligente Haus „hört zu“

21.02.2017 | Messenachrichten