Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Stoppuhr im Gehirn

06.03.2009
Wissenschaftler aus Freiburg untersuchen mit neuen Methoden die Signalverarbeitung im Gehirn

Das Gehirn ist ein hochkomplexes Informationsverarbeitungssystem. Wenn wir sehen, hören, oder uns erinnern, werden Informationen in Form von elektrischen Signalen von Nervenzelle zu Nervenzelle weitergegeben - nur so können wir Bilder erkennen und Sprache verstehen.

In welcher Form aber sind die Informationen in der Folge neuronaler Impulsen enthalten? Kommt es auf die Menge der Impulse an oder auf deren genaues Timing? Diese zentrale Frage der Hirnforschung haben Wissenschaftler um Clemens Boucsein, Bernstein Zentrum für Computational Neuroscience und Universität Freiburg, in Zusammenarbeit mit Martin Nawrot, Bernstein Zentrum für Computational Neuroscience Berlin, am Beispiel der Großhirnrinde mit neuen Methoden genauer untersucht.

Sie zeigten: die Nervenzellen reagieren mit einer sehr viel höheren zeitlichen Präzision, als bisher angenommen. Ihre Arbeit wurde in der Fachzeitschrift "Frontiers in Neural Circuits" publiziert.

Alle Nervenzellen übertragen Informationen als eine Folge neuronaler Impulse. Aber die Art und Weise, wie sie Informationen in diesen Signalen verschlüsseln und wie diese von nachgeschalteten Zellen ausgelesen werden, unterscheidet sich erheblich. Einige Sinneszellen und Nervenzellen, die Muskeln anregen, nutzen einen so genannten "Raten Code": je mehr Impulse pro Zeiteinheit, desto heller das wahrgenommene Licht, lauter der Ton oder desto stärker die verursachte Muskelkontraktion. Andere Zellen wiederum nutzen einen "zeitlichen Code": hierbei kommt es nicht auf die Zahl der Impulse an, sondern auf deren exaktes Timing - darauf, ob eine Zelle einen Impuls wenige Millisekunden vor oder nach einer anderen Zelle sendet. Boucsein und seine Kollegen untersuchten, welche der beiden Strategien Zellen in der Großhirnrinde nutzen.

Jede Zelle in der Großhirnrinde erhält viele Signale von anderen, vorgeschalteten Zellen. Wenn Zellen in der Großhirnrinde einen "zeitlichen" Code nutzten, müssten sie auch in der Lage sein, mit hoher zeitlicher Präzision auf diese Eingangssignale zu reagieren. Um dies zu überprüfen, haben sich Boucsein und seine Kollegen einer neuen Methode bedient, die in ihrem Labor entwickelt wurde. Im Gewebeschnitt messen sie die elektrische Aktivität einer Zelle, während sie deren vorgeschaltete Zellen in einer präzise definierten zeitlichen Abfolge aktivieren. Sie nutzen dabei eine chemische Komponente, die unter dem Einfluss von Licht freigesetzt wird und die Nervenzellen anregt. Mit einem Laser und einem Spiegelsystem werden auf diese Weise die vorgeschalteten Zellen immer wieder in der genau gleichen zeitlichen Abfolge angeschaltet. "Wir waren überrascht, wie reproduzierbar und zeitlich exakt die nachgeschaltete Zelle auf die Folge von Eingangssignalen reagiert", sagt Boucsein. Das ist alles andere als selbstverständlich. Jedes Signal der vorgeschalteten Zelle muss an langen zellulären Fortsätzen entlanglaufen, auf die nachgeschaltete Zelle übertragen und dort wiederum an den Fortsätzen zum Zellkörper transportiert werden. Bei all diesen Prozessen könnte es - theoretisch - zu zeitlichen Ungenauigkeiten kommen. Dass die Zellen trotzdem so akkurat reagieren, zeigt: sie sind für einen Code, bei dem es auf das exakte Timing ankommt, wie geschaffen. Würden Zellen der Großhirnrinde hingegen einen Raten-Code nutzen, würden sie nach diesen Befunden eher unzuverlässig arbeiten.

Originalveröffentlichung: Nawrot MP, Schnepel P, Aertsen A, Boucsein C. Precisely timed signal transmission in neocortical networks with reliable intermediate-range projections.
Front Neural Circuits. 2009;3:1. Epub 2009 Feb 10.
doi:10.3389/neuro.04.001.2009
Kontaktinformation:
Dr. Clemens Boucsein
Abt. Neurobiologie & Biophysik
Institut für Biologie III
Albert-Ludwigs-Universität Freiburg
Email: boucsein@biologie.uni-freiburg.de
Tel: 0761 203 2862

Dr. Katrin Weigmann | idw
Weitere Informationen:
http://www.bccn.uni-freiburg.de/
http://www.brainworks.uni-freiburg.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pflanzlicher Wirkstoff lässt Wimpern wachsen
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Wolkenbildung: Wie Feldspat als Gefrierkeim wirkt
09.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie

Speicherdauer von Qubits für Quantencomputer weiter verbessert

09.12.2016 | Physik Astronomie