Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stopp-Signal für Leukämiestammzellen

15.08.2011
Ein internationales Krebsforscherteam, dem auch Wissenschaftler aus dem Deutschen Krebsforschungszentrum angehören, entdeckte, dass überaktive Signale eines Wachstumsfaktors die akute T-Zell-Leukämie fördern.

Blockierten die Forscher den als IGF1 bezeichneten Faktor, stellten die Blutkrebszellen ihr Wachstum ein. Darüber hinaus verloren auch die besonders gefährlichen Krebsstammzellen ihre Fähigkeit, sich selbst zu erneuern. Bereits verfügbare Hemmstoffe des Wachstumsfaktors könnten dabei helfen, diese Form der Leukämie besser zu behandeln und Rückfälle zu vermeiden.

Eine große Zahl spezialisierter Wachstumsfaktoren sorgt dafür, dass Zellen der verschiedenen Gewebe des Körpers sich bei Bedarf teilen und ausdifferenzieren. Die hormonähnlichen Faktoren binden an die jeweils passenden Rezeptoren auf der Oberfläche ihrer Zielzellen und geben damit den Befehl zur Zellteilung. Doch eine einzige Erbgutveränderung kann ausreichen, dass das System außer Kontrolle gerät: Ist etwa das Gen für einen Wachstumsfaktor oder für den dazugehörigen Rezeptor überaktiv, so wird die Zelle ständig dazu angeregt, sich zu teilen – die Folge kann Krebs sein.

Solche fehlerhaften Wachstumssignale spielen bei zahlreichen Krebserkrankungen eine Rolle. So bilden Brustkrebszellen bei etwa 20 Prozent der erkrankten Frauen zu viele Rezeptoren für den Wachstumsfaktor Her2/neu; bei Darmkrebs stellen Ärzte oft eine Überproduktion des Wachstumsfaktors EGF fest.

Gemeinsam mit Kollegen aus Frankreich, Kanada und den USA entdeckten nun Wissenschaftler um Professor Dr. Andreas Trumpp aus dem Deutschen Krebsforschungszentrum, dass auch bei der akuten T Zell-Leukämie (T-ALL) das bösartige Zellwachstum von einem Wachstumsfaktor angetrieben wird. In diesem Fall spielt der „insulinähnliche Wachstumsfaktor 1“ (IGF1) die entscheidende Rolle.

Die Forscher fanden heraus, dass bei der T-ALL zu viele IGF1-Rezeptoren vorhanden sind. Die Leukämiezellen werden dadurch besonders empfindlich für die Signale des IGF1. Blockierten die Wissenschaftler den IGF1-Rezeptor mit spezifischen Hemmstoffen oder schalteten das Gen für den Rezeptor aus, stellten die Blutkrebszellen das Wachstum ein. Das funktionierte sowohl bei Krebszellen von Mäusen als auch bei Leukämiezellen des Menschen.

Die Blockade des IGF1-Signals stoppte aber nicht nur das Wachstum der Krebszellen. Auch die gefährlichen Krebsstammzellen verloren ihre Fähigkeit, sich selbst zu erneuern. Das wiesen die Forscher mit einem klassischen Experiment nach, der so genannten seriellen Transplantation: Sie übertrugen T-ALL-Zellen, die nur noch geringe Mengen an IGF1-Rezeptoren auf ihrer Oberfläche bildeten, auf Mäuse. Während T-ALL-Zellen normalerweise immer eine Leukämie in den Empfängertieren auslösen, erkrankten nach Injektion der veränderten T-ALL nur noch sehr wenige Mäuse an Blutkrebs. Das war für die Forscher der entscheidende Hinweis darauf, dass die Leukämiestammzellen fehlten bzw. nicht mehr aktiv waren, denn nur diese sind in der Lage, eine Leukämie auszulösen.

„Wir müssen die Menge an IGF1-Rezeptoren nur wenig reduzieren, um den Krebsstammzellen ihre Fähigkeit zur Selbsterneuerung zu nehmen. Offenbar sind Leukämie-Stammzellen in besonderem Maße von starken IGF1-Signalen abhängig“, erklärt Dr. Hind Medyouf, die Erstautorin der Arbeit.

Akute lymphatische Leukämien sind die häufigsten bösartigen Erkrankungen bei Kindern, doch auch ältere Erwachsene können betroffen sein. Die Ergebnisse eröffnen neue Perspektiven für die Behandlung, denn Wirkstoffe, die den IGF1-Rezeptor blockieren, existieren bereits und werden bei anderen Krebsarten, wie z. B. Brustkrebs bereits in klinischen Studien erprobt. Der Stammzell-Spezialist Trumpp erklärt: „Gerade ältere T-All-Patienten erleiden nach einer zunächst scheinbar erfolgreichen Chemotherapie oft einen Rückfall. Eine Hemmung des IGF1-Signalwegs würde insbesondere auf die Leukämie-Stammzellen wirken und könnte daher eine Rückkehr der Erkrankung verhindern.“

Hind Medyouf, Samuel Gusscott, Hongfang Wang, Carol Wai, Oksana Nemirovsky, Andreas Trumpp, Francoise Pflumio, Joan Carboni, Marco Gottardis, Michael Pollak, Jon C. Aster, Martin Holzenberger und Andrew P. Weng: High level IGF1R expression is required for leukemia-initiating cell activity in T-ALL and is supported by Notch signalling.Journal of Experimental Medicine, 2011, DOI:10.1084/jem.20110121

Legende: Knochenmarksausstrich einer akuten T-Zell-Leukämie. Quelle: Hind Medyouf, Deutsches Krebsforschungszentrum

Das Deutsche Krebsforschungszentrum (DKFZ) ist mit mehr als 2.500 Mitarbeiterinnen und Mitarbeitern die größte biomedizinische Forschungseinrichtung in Deutschland. Über 1000 Wissenschaftlerinnen und Wissenschaftler erforschen im DKFZ, wie Krebs entsteht, erfassen Krebsrisikofaktoren und suchen nach neuen Strategien, die verhindern, dass Menschen an Krebs erkranken. Sie entwickeln neue Ansätze, mit denen Tumoren präziser diagnostiziert und Krebspatienten erfolgreicher behandelt werden können. Daneben klären die Mitarbeiterinnen und Mitarbeiter des Krebsinformationsdienstes (KID) Betroffene, Angehörige und interessierte Bürger über die Volkskrankheit Krebs auf. Das Zentrum wird zu 90 Prozent vom Bundesministerium für Bildung und Forschung und zu 10 Prozent vom Land Baden-Württemberg finanziert und ist Mitglied in der Helmholtz-Gemeinschaft deutscher Forschungszentren.

Dr. Stefanie Seltmann | idw
Weitere Informationen:
http://www.dkfz.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Akute Myeloische Leukämie: Ulmer erforschen bisher unbekannten Mechanismus der Blutkrebsentstehung
26.04.2017 | Universität Ulm

nachricht Zusammenhang zwischen Immunsystem, Hirnstruktur und Gedächtnis entdeckt
26.04.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Ballungsräume Europas

26.04.2017 | Veranstaltungen

200 Weltneuheiten beim Innovationstag Mittelstand in Berlin

26.04.2017 | Veranstaltungen

123. Internistenkongress: Wie digitale Technik die Patientenversorgung verändert

26.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Akute Myeloische Leukämie: Ulmer erforschen bisher unbekannten Mechanismus der Blutkrebsentstehung

26.04.2017 | Biowissenschaften Chemie

Naturkatastrophen kosten Winzer jährlich Milliarden

26.04.2017 | Interdisziplinäre Forschung

Zusammenhang zwischen Immunsystem, Hirnstruktur und Gedächtnis entdeckt

26.04.2017 | Biowissenschaften Chemie