Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

„Stop and go“ – Wie die Zelle Blockaden der Genabschrift auflöst

24.02.2011
Die Gen-Transkription steht im Zentrum allen Lebens. Dabei wird – als erster Schritt auf dem Weg zur Proteinsynthese – genetische Information in ein Botenmolekül übertragen.

Das Enzym Polymerase II, kurz Pol II, ist zuständig für die Abschrift. Kommt es zu Fehlern bei diesem hochsensiblen Vorgang, kann die gesamte Transkription zum Erliegen kommen. Der LMU-Biochemiker Professor Patrick Cramer, Leiter des Genzentrums, und sein Mitarbeiter Dr. Alan Cheung konnten nun im Detail zeigen und erstmals auch im Film festhalten, was bei dieser molekularen Blockade geschieht.

Sie konnten sogar beobachten wie die Genabschrift reaktiviert wird. Die Reaktivierung der Transkription kommt in allen Zellen vor und ist deswegen von grundlegender Bedeutung. „In höheren Organismen wird auf diesem Weg auch die Genaktivität von Stammzellen und Krebszellen reguliert“, betont Cramer. (Nature online, 23. Februar 2011)

„Die DNA selbst ist träge“, betont Patrick Cramer. Erst die Polymerase II erweckt das fadenförmige Molekül zum Leben, wenn die in der DNA enthaltene genetische Information in das Botenmmolekül mRNA abgeschrieben wird, um als Vorlage für die Proteinsynthese zu dienen. Weil Proteine wiederum die wichtigsten Funktionsträger der Zelle sind, kann biologisches Leben ohne Transkription nicht funktionieren.

Die Abschrift der Gene ist ein komplexer und hochsensibler Vorgang. Nicht selten kommt es zum Einbau falscher Bausteine oder zu anderen Fehlern, die die gesamte Transkription blockieren. Häufig bewegt sich Pol II dann ein kurzes Stück in die Gegenrichtung entlang der DNA, so dass der Defekt korrigiert werden kann. Problem gelöst: Die Transkription läuft weiter. Manchmal aber bewegt sich das Enzym zu weit zurück, so dass sich die mRNA verkeilt.

In diesem Fall kommt die Transkription vollständig zum Stillstand und Pol II kann erst durch den Faktor TFIIS aus der Erstarrung gelöst werden. Dieser Faktor verändert das aktive Zentrum des Enzyms so, dass der hinderliche RNA-Abschnitt abgetrennt und anschließend die Transkription fortgesetzt werden kann. Cramer und Cheung konnten nun erstmals die molekularen Details der Blockade und ihrer Reaktivierung entschlüsseln – und eben dies auf Film festhalten.

So zeigte sich unter anderem, dass TFIIS die Bindung der mRNA an Pol II löst und beim Abschneiden des eingeklemmten mRNA-Stücks hilft. „Dieser Prozess findet in allen Zellen ständig statt und ist essentiell für ihr Überleben“, sagt Cramer. „Darüber hinaus wird dieser Prozess in höheren Lebewesen auch zur Regulation der Genaktivität genutzt, gerade auch in Stamm- und Krebszellen. Insgesamt übt Pol II eine zentrale Aufgabe in der Zelle aus und steht deshalb im Mittelpunkt meiner Forschung, die zunehmend in einem systembiologischen Ansatz das transkriptionelle Netzwerk der Zelle aufklären und molekular-mechanistisch beschreiben soll.“ (göd/suwe)

Das Projekt wurde im Rahmen der Exzellenzcluster „Center for Integrated Proein Science Munich“ (CiPSM) und „Nanosystems Initiative Munich“ (NIM) durchgeführt.

Publikation:
Structural basis of RNA polymerase II backtracking, arrest, and reactivation;
Alan C.M. Cheung und Patrick Cramer
Nature online, 23. Februar 2011
Ansprechpartner:
Prof. Dr. Patrick Cramer
Direktor Department Biochemie und Genzentrum der LMU
Fakultät für Chemie und Pharmazie
Tel.: 089 / 2180 – 76965
Fax: 089 / 2180 – 76998
E-Mail: cramer@lmb.uni-muenchen.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.uni-muenchen.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Evolutionsvorteil der Strandschnecke
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Mobile Goldfinger
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Von Agenten, Algorithmen und unbeliebten Wochentagen

28.03.2017 | Unternehmensmeldung

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit