Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

„Stop and Go” auf der DNA – Physikalisches Modell analysiert die Verteilung der Nukleosomen

20.08.2010
Das Genom von Lebewesen mit Zellkern weist eine charakteristische Struktur auf: Die fadenförmige DNA wickelt sich sehr kompakt zu sogenannten Nukleosomen auf, die durch frei zugängliche DNA-Abschnitte verbunden sind – und damit etwa an aufgefädelte Perlen erinnern. Diese Struktur bestimmt entscheidend mit, welche Gene an- oder ausgeschaltet werden und damit auch, welche Proteine hergestellt werden.

Die beiden LMU-Biophysiker Professor Ulrich Gerland und Wolfram Möbius haben nun ein Modell entwickelt, mit dessen Hilfe sich die Verteilung der Nukleosomen um die strategisch wichtigen Startstellen der Transkription beschreiben lässt – die frei von Nukleosomen sein müssen.

Die Transkription bezeichnet die Abschrift der Gene, also den ersten Schritt in der Übertragung genetischer Information in Proteine. Dabei entdeckten die Wissenschaftler, dass sich auf beiden Seiten der nukleosomfreien Startstellen der Transkription unterschiedliche „Stopp“-Signale befinden, die die Bildung von Nukleosomen verhindern.

„Unser Modell könnte eine wichtige Hilfestellung bei der Entschlüsselung des sogenannten Chromatincodes sein, der dem Genom seine Struktur verleiht und bisher noch weitgehend unverstanden ist“, sagt Gerland. (PLoS Computational Biology, 19. August 2010)

Das Erbmaterial höherer Organismen liegt eng gepackt in den Kernen ihrer Zellen. Die fadenförmige DNA wickelt sich dabei auch zu sogenannten Nukleosomen auf. Deren Inneres besteht aus jeweils acht Histon-Proteinen, die – ähnlich einer Spule – von DNA umwickelt sind. Die Nukleosomen sind durch unverpackte DNA-Bereiche verbunden und erinnern dadurch an aufgefädelte Perlen. Die Nukleosomen bringen die DNA aber nicht nur in eine kompakte Form für die Verpackung in den Zellkern. „Sie beeinflussen auch, welche Bereiche des Erbmoleküls abgelesen und damit in Proteine übersetzt werden können“, erklärt Gerland vom Arnold Sommerfeld Center for Theoretical Physics (ASC) und dem Center for NanoScience (CeNS) an der Fakultät für Physik der LMU.

Die Zugänglichkeit der DNA ist ein wichtiger Aspekt der Genexpression und für die Forschung von großem Interesse. Ein Schwerpunkt ist dabei die Frage, wie die Nukleosomen um die Startregionen der Transkription verteilt sind. Denn an diesen Stellen beginnt das Ablesen der DNA, das ist der erste Schritt in der Übertragung genetischer Information in Proteine. An diesen Start- oder Promoter-Regionen wurde häufig ein typisches Muster beobachtet, bei dem eine nukleosomfreie Zone von Bereichen mit einer charakteristischen Verteilung von Nukleosomen umgeben ist. Die biologische Funktion dieser Lücken ist offenbar, der aus vielen Untereinheiten bestehenden molekularen Transkriptionsmaschinerie Andockstellen freizuhalten.

Zusammen mit dem Doktoranden Wolfram Möbius untersuchte Gerland nun, ob ein einfaches physikalisches Modell die Verteilung der Nukleosomen rund um eine Promoter-Region erklären kann. Die Forscher nutzten dafür das sogenannte Tonks-Modell, das die Wechselwirkung zwischen Gaspartikeln beschreibt, wenn sich diese nur in einer Dimension bewegen können. „Kennt man die Position eines Teilchens, kann man mithilfe des Modells die Positionen der anderen Teilchen vorhersagen“, sagt Wolfram Möbius, der Erstautor der Studie. „Zudem lassen sich charakteristische Oszillationen zwischen den Gaspartikeln beobachten.“ Die Analysen der beiden Forscher ergaben, dass das Tonks-Modell auch die Verteilung der Nukleosomen erstaunlich gut beschreiben kann.

„Wenn wir die Durchschnittswerte vieler verschiedener Promotor-Regionen einsetzen, gibt das Modell die nukleosomfreie Zone mit der typischen Schwankung der Nukleosom-Dichte auf beiden Seiten wieder“, berichtet Gerland. Das neue Modell stimmt am besten mit den Daten überein, wenn für beide Grenzregionen der nukleosomfreien Zone unterschiedliche Randbedingungen angenommen werden. „Auf der einen Seite – und zwar in Richtung der Transkription – muss es ein Nukleosom geben, das wie eine Art Straßenblockade die Lücke ohne Nukleosomen freihält“, meint Gerland. „Auf der anderen Seite, also gegen die Transkriptionsrichtung, muss dagegen ein breiter, gewissermaßen abstoßender Bereich vorliegen. Wie eine Art Verkehrsschild muss er signalisieren, dass sich hier keine Nukleosome bilden.“

Die Forscher konnten mit vorliegendem Ergebnis erstmals das Modell des amerikanischen Nobelpreisträgers Roger Kornberg quantitativ bestätigen, der 1974 die Nukleosomen entdeckte und später ein Modell für ihre statistische Verteilung im Genom entwickelte. Das neue Modell könnte wesentlich dazu beitragen, die Regeln zu verstehen, nach denen die Struktur der Chromosomen festgelegt wird. „Unsere Berechnungen könnten eine Hilfestellung bei der Dekodierung des sogenannten Chromatincodes sein, über den bisher noch wenig bekannt ist“, sagt Gerland. „In diesem Code ist festgelegt, wie das Genom seine dreidimensionale Struktur erhält.“ (CA)

Publikation:
„Quantitative test of the barrier nucleosome model for statistical positioning of nucleosomes up- and downstream of transcription start sites”;
Wolfram Möbius, Ulrich Gerland;
PLoS Computational Biology
19. August 2010
Ansprechpartner:
Prof. Dr. Ulrich Gerland
Ludwig-Maximilians-Universität (LMU) München
Biological Physics and Quantitative Biology
Arnold Sommerfeld Center for Theoretical Physics
Tel.: 089 / 2180 – 4514
E-Mail: gerland@lmu.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.physik.uni-muenchen.de/~gerland

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Software mit Grips
20.04.2018 | Max-Planck-Institut für Hirnforschung, Frankfurt am Main

nachricht Einen Schritt näher an die Wirklichkeit
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics