Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stoffwechselweg macht Brust-Tumore aggressiver

15.12.2015

Forscher der Universität Würzburg haben einen Stoffwechselweg aufgeklärt, der zu bewirken scheint, dass Brust-Tumore aggressiver werden. Die Studie identifiziert zudem mögliche Angriffspunkte für neue Krebsmedikamente. Sie erscheint in Kürze in der renommierten Fachzeitschrift Cancer Cell.

An der Arbeit waren auch Wissenschaftler aus Berlin, Cambridge und San Francisco beteiligt. Das Forschungsteam hat in seiner Studie ein Protein namens MYC unter die Lupe genommen.


Schnitt durch die Brustdrüse einer Maus. Die Regionen, in denen sich die Stammzellen befinden, sind rot angefärbt. In diesem Bild werden durch gezielte gentechnische Veränderungen große Mengen MYC gebildet, das die Differenzierung der Stammzellen in Brustgewebe kontrolliert. (Bild: Biozentrum der Universität Würzburg)


Die Stammzellen der Brust befinden sich normalerweise im Ruhezustand. Wenn sie durch MYC das Signal bekommen, dass sie neues Gewebe bilden sollen, beginnen sie sich zu teilen. Bei ihrer Teilung verbrauchen die Zellen sehr viel Energie. Diese erhalten sie aus speziellen Zellkraftwerken, den Mitochondrien (in der Abbildung orange angefärbt). Die hohe Energienachfrage bewirkt letztlich auf einem indirekten Weg, dass die Zellen ihre Stammzelleigenschaften verlieren und nur noch Brustgewebe bilden können. (Bild: Biozentrum der Universität Würzburg)

MYC ist ein starkes Onkogen: Es bewirkt unter bestimmten Bedingungen, dass Zellen sich unkontrolliert vermehren. Das ist beispielsweise in manchen hoch aggressiven Brusttumoren der Fall: Je mehr MYC die Krebszellen bilden, desto bösartiger werden sie und desto schwerer sind sie zu behandeln.

Gleichzeitig übernimmt MYC jedoch eine wichtige Rolle im Körper: Es ist an der Regulation von adulten Stammzellen beteiligt. Normalerweise legen sich Zellen irgendwann im Laufe ihres Lebens auf einen bestimmten Karriereweg fest – sie werden etwa zu Haut-, Leber- oder Nervenzellen. Diesen Weg können sie nicht verlassen; aus einer Hautzelle wird also beispielsweise nie eine Leberzelle.

Adulte Stammzellen dagegen sind pluripotent – ihr Schicksal ist noch nicht komplett entschieden. Die adulten Stammzellen der Brust zum Beispiel können sich noch in die verschiedenen Gewebetypen der Brustdrüse differenzieren. MYC kontrolliert diesen Vorgang. „Wir haben zeigen können, wie MYC das genau macht“, erklärt Dr. Björn von Eyss vom Biozentrum der Julius-Maximilians-Universität Würzburg.

Demnach kurbelt MYC einerseits die Teilung der Stammzelle an. Dazu benötigt diese jede Menge Energie. Der gesteigerte Energieverbrauch bewirkt, dass ein Enzym namens AMPK aktiv wird. Dieses Enzym schaltet seinerseits auf indirektem Wege das Stammzellprogramm ab. Dadurch werden die neuen Zellen auf ihre Karriere festgelegt: Sie differenzieren sich zu Brustgewebe und verlieren ihre Stammzelleigenschaften.

Gefährlicher Schutzmechanismus

„Die Teilung der Stammzelle und ihre Differenzierung sind also aneinander gekoppelt“, betont Björn von Eyss. „Wir interpretieren das als Schutzmechanismus gegen Krebs: Aus der Stammzelle können nicht einfach unkontrolliert beliebige Gewebetypen hervorgehen, die sich immer weiter teilen.“

Erstaunlicherweise scheint dieser Mechanismus in Tumorzellen der Brust aber gerade den gegenteiligen Effekt zu haben. Auch dort bewirkt MYC, dass das AMPK-Enzym aktiv wird. Dadurch wird der Tumor aber noch aggressiver und schwerer zu behandeln. Warum das so ist, wollen die Würzburger Forscher in Zukunft genauer untersuchen.

Ein hoher MYC-Spiegel verschlechtert die Prognose von Brustkrebs-Patienten daher erheblich. „Wenn wir in Mäusen die Aktivität von MYC auf gentechnischem Wege unterbinden, werden dagegen die Tumoren wieder gutartiger“, sagt von Eyss. MYC eignet sich jedoch – unter anderem aufgrund seiner vielfältigen Wirkungen – leider nicht als Ansatzpunkt für Medikamente.

Die Forscher nehmen nun daher stattdessen den von ihnen identifizierten Signalweg ins Visier. „Wir suchen gezielt nach Wirkstoffen, die zum Beispiel die Aktivität von AMPK senken“, erklärt von Eyss. „Möglicherweise können wir mit solchen Wirkstoffen erreichen, dass die Tumoren weniger aggressiv wachsen und besser auf Medikamente ansprechen.“

Björn von Eyss, Laura A. Jaenicke, Roderik M. Kortlever, Nadine Royla, Katrin E.Wiese, Sebastian Letschert, Leigh-Anne McDuffus, Markus Sauer, Andreas Rosenwald, Gerard I. Evan, Stefan Kempa, and Martin Eilers: A MYC-driven change in mitochondrial dynamics limits YAP/TAZ function in mammary epithelial cells and breast cancer; Cancer Cell; http://dx.doi.org/10.1016/j.ccell.2015.10.013

Von: Frank Luerweg

Kontakt

Dr. Björn von Eyss, Biozentrum der Universität Würzburg, T (0931) 31-82695, bjoern.voneyss@biozentrum.uni-wuerzburg.de

Weitere Informationen:

http://dx.doi.org/10.1016/j.ccell.2015.10.013

Robert Emmerich | Julius-Maximilians-Universität Würzburg
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Stammzellen verlassen Blutgefäße in strömungsarmen Zonen des Knochenmarks
17.02.2017 | Max-Planck-Institut für molekulare Biomedizin, Münster

nachricht Der Entropie auf der Spur
17.02.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Durchbruch mit einer Kette aus Goldatomen

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des Wärmetransportes

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: Hoch wirksamer Malaria-Impfstoff erfolgreich getestet

Tübinger Wissenschaftler erreichen Impfschutz von bis zu 100 Prozent – Lebendimpfstoff unter kontrollierten Bedingungen eingesetzt

Tübinger Wissenschaftler erreichen Impfschutz von bis zu 100 Prozent – Lebendimpfstoff unter kontrollierten Bedingungen eingesetzt

Im Focus: Sensoren mit Adlerblick

Stuttgarter Forscher stellen extrem leistungsfähiges Linsensystem her

Adleraugen sind extrem scharf und sehen sowohl nach vorne, als auch zur Seite gut – Eigenschaften, die man auch beim autonomen Fahren gerne hätte. Physiker der...

Im Focus: Weltweit genaueste und stabilste transportable optische Uhr

Optische Strontiumuhr der PTB in einem PKW-Anhänger – für geodätische Untersuchungen, weltweite Uhrenvergleiche und schließlich auch eine neue SI-Sekunde

Optische Uhren sind noch genauer als die Cäsium-Atomuhren, die gegenwärtig die Zeit „machen“. Außerdem benötigen sie nur ein Hundertstel der Messdauer, um eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

ANIM in Wien mit 1.330 Teilnehmern gestartet

17.02.2017 | Veranstaltungen

Ökologischer Landbau: Experten diskutieren Beitrag zum Grundwasserschutz

17.02.2017 | Veranstaltungen

Von DigiCash bis Bitcoin

16.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Stammzellen verlassen Blutgefäße in strömungsarmen Zonen des Knochenmarks

17.02.2017 | Biowissenschaften Chemie

LODENFREY setzt auf das Workforce Mangement von GFOS

17.02.2017 | Unternehmensmeldung

50 Jahre JULABO : Erfahrung – Können & Weiterentwicklung!

17.02.2017 | Unternehmensmeldung