Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stoffwechsel von Bakteriengemeinschaften wird sichtbar - neue Methode zum Verfolgen des Kohlenstoffflusses

11.05.2010
Überall begegnen uns Bakteriengemeinschaften - von der Erde im Blumentopf bis zum menschlichen Darm erfüllen diese Gemeinschaften wichtige Funktionen.

Forscher haben nun eine Methode entwickelt, um den Stoffwechsel von Bakteriengemeinschaften genau zu studieren. Dabei wird es erstmals durch den Einbau von stabilen Kohlenstoffisotopen in Proteine mit einem neuen am UFZ entwickelten Algorithmus möglich, natürliche Abbauprozesse viel detaillierter als bisher zu untersuchen, Schlüsselorganismen zu identifizieren und deren Zusammenwirken bei komplexen Abbauprozessen aufzuklären.

Die neue, Protein-SIP genannte Technik ermöglicht eine sehr genaue Bestimmung des Kohlenstoffflusses in mikrobiellen Gemeinschaften, schreiben Wissenschaftler des Helmholtz-Zentrums für Umweltforschung (UFZ), des Max-Planck-Institutes für Infektionsbiologie sowie der Universitäten Oslo und Greifswald im Fachblatt Molecular and Cellular Proteomics.

Bisher war es zwar über DNA- oder RNA-Analysen möglich, Arten mit aktivem Stoffwechsel zu bestimmen. Mit der neuen Methode können darüber hinaus Kohlenstoffflüsse und damit Nahrungsketten innerhalb einer mikrobiellen Gemeinschaft erfasst werden. Das Zusammenspiel einzelner Gruppen von Mikroorganismen innerhalb der Gemeinschaft kann so analysiert werden.

„Forscher erstellen Katalog der Darmbakterien-Gene“, „Bakterien verraten den Mörder“ – solche und ähnliche Schlagzeilen zeigen, dass Mikrobiologen momentan weltweit mit Hochdruck daran arbeiten, die Welt der Bakterien auf und im Menschen zu erforschen. Die Bandbreite der potenziellen Anwendungen scheint riesig und könnte von der Rechtsmedizin über die einfachere Bestimmung von Krankheiten bis hin zu völlig neuen Therapiemöglichkeiten reichen. Doch mit der Bestimmung der Gene allein ist es nicht getan, denn die Bakterien leben nicht allein, sondern in großen Gemeinschaften. „Das ist wie in einer Stadt mit vielen Menschen. Stellen Sie sich vor, dort bricht ein Feuer aus. Dann gibt es normalerweise Feuerwehrmänner. Fehlen diese, dann müssen andere eingreifen oder es kommt zur Katastrophe“, erklärt Dr. Ingo Fetzer vom UFZ. „Nur wer ist für was innerhalb dieser mikrobiellen Gemeinschaften zuständig? Das ist eine wichtige Frage, bei der die Wissenschaft noch ganz am Anfang steht.“ Und dabei geht es nicht nur um die Darmflora des Menschen. Mikroben sind winzige Lebewesen, die vom menschlichen Auge unbemerkt alle großen biologischen Prozesse der Erde steuern: egal ob im globalen Kohlenstoffkreislauf, bei der Remineralisierung von organischem Material oder auch dem Abbau von Schadstoffen – sie sind überall dabei.

Auf fünf bis 100 Millionen Arten wird die Vielfalt der höheren Lebewesen auf unserem Planeten geschätzt. Über die Anzahl der Arten von Mikroorganismen gibt es nur vage Vermutungen. Folglich muss sich die Forschung auf einige wenige konzentrieren. Wie lassen sich aber die Schlüsselorganismen in mikrobiellen Gemeinschaften identifizieren? Um diese Frage besser beantworten zu können, kombinierten Forscher am Helmholtz-Zentrum für Umweltforschung den Einsatz von stabilen Isotopen mit der Messung von Proteinen per Massenspektrometrie und der Bioinformatik. In dem neuen Verfahren werden mikrobielle Gemeinschaften mit einer Kohlenstoffquelle gefüttert, die neben dem normalen Kohlenstoff 12C das sogenannte schwere, nicht-radioaktive Isotop 13C enthält. Diese beiden Isotope unterscheiden sich in ihrem Gewicht um 1,0035 atomare Masseneinheiten. Weil diese Isotope stabil sind, wird die Methode auch stable isotope probing (SIP) genannt. Nachdem die Bakterien das isotopenmarkierte Substrat aufgenommen haben, werden die 13C -Atome in die Proteine der Bakterien eingebaut. Die Bakterien, die das Substrat direkt verwerten, bauen das 13C zuerst ein. Andere Bakterienarten verwerten wiederum lediglich Stoffwechselprodukte der Erstverwerter und bauen dementsprechend weniger 13C und dieses auch erst später in ihre Proteine ein. Für die Analyse werden die Proteine aller Bakterienarten einer Probe extrahiert und durch das Enzym Trypsin in spezifische Fragmente geschnitten. Diese werden per Massenspektrometer analysiert. Die Analyse ergibt dann die Aminosäuresequenz der Peptide und verrät nach dem Abgleich mit einer Genomdatenbank deren Herkunft, also das Bakterium aus welchem das Peptid stammt. Peptide sind Bruchstücke von Proteinen - also organische Verbindungen aus mehreren Aminosäuren. Diese bestehen hauptsächlich aus Kohlenstoff und Stickstoff, die zu den Grundbausteinen aller Moleküle in Organismen gehören und damit auch in mikrobiellen Mischkulturen weitergegeben werden. In einem zweiten Schritt wird nun ermittelt, wie viel 13C eingebaut wurde. Der Anteil von 13C weist dann die Stoffwechselaktivität des jeweiligen Bakteriums elegant und mit guter Präzision nach. „Wir haben diese Schlüsseltechnologie erstmals 2008 in einer Gemeinschaftsarbeit zweier UFZ-Departments zur Analyse der Stoffwechselaktivität einer einzelnen Bakterienart in einer Mischkultur erprobt. An der Aufklärung von Struktur und Funktion von mikrobiellen Gemeinschaften, die am Abbau von Schadstoffen beteiligt sind, arbeiten wir schon länger. Aber erst durch präzisere Messungen, die die neuen Massenspektrometer erlauben, wurde ein Durchbruch in der Entwicklung dieser Methode erzielt“, sagt PD Dr. Martin von Bergen (Department für Proteomik).

Nun ist es möglich, das Ausmaß des Einbaus von 13C in die Peptide anhand der Nachkommastellen zu berechnen. Dabei machen sich die Forscher die Abweichung von 0,0035 atomaren Masseneinheiten zu Nutzen, die über die theoretisch eigentlich genau 1,000 atomaren Massenunterschiede zwischen 12C und 13C hinausgehen. Da über 20 Kohlenstoffatome in einem Peptid zu finden sind, verschiebt sich die Nachkommastelle über etwa 0,07 atomare Masseneinheiten. „Unser neuer Algorithmus wird die Arbeiten in der Zukunft signifikant erleichtern. Diese Methode hat großes Potenzial für die Untersuchung von Gemeinschaften, wie sie im Zentrum der mikrobiellen Ökologie stehen“, freut sich Prof. Hauke Harms (Department für Umweltmikrobiologie).

Mit Unterstützung der Deutschen Forschungsgemeinschaft (DFG) und der EU sollen nun die Schlüsselorganismen im Abbau von Umweltschadstoffen wie Benzol und polyzyklischen Kohlenwasserstoffen ohne Sauerstoff identifiziert werden. „In Ergänzung zu den anderen Techniken ist Protein-SIP ein sehr gut geeignetes Werkzeug, um zum Beispiel das Nahrungsnetzwerk beim Benzolabbau aufzuklären. In Projekten mit nationalen und internationalen Partnern wird Protein-SIP bereits zur Kennzeichnung der Stoffwechselaktivitäten von Methanbakterien aus Erdöllagerstätten oder des Methankreislaufes in marinen Sedimenten verwendet“, ergänzt PD Dr. Hans Richnow (Department Isotopenbiogeochemie). Diese Arbeiten haben Bedeutung für unsere Energiesicherung und Erhaltung der Umweltqualität.

Mit der Methode des Protein-SIP ist es möglich geworden, den Kohlenstofffluss innerhalb von Mischkulturen nachzuvollziehen. Mögliche weitere Anwendungen liegen in der Bearbeitung von Biofilmen, wie sie in Klärwerken zum Einsatz kommen, in der Optimierung der Prozesse bei der Biogaserzeugung oder bei Untersuchungen der Interaktionen in der Darmflora des Menschen. Als nächstes wollen die Leipziger Forscher zunächst einmal die Beziehungen von den Bakterien im Darm von Termiten und Regenwürmern zu ihren Wirtsorganismen unter die Lupe nehmen.

http://www.ufz.de/index.php?de=19647

Die Vereinten Nationen haben 2010 zum internationalen Jahr der biologischen Vielfalt erklärt. Ziel ist es, dass Thema biologische Vielfalt mit seinen vielen Facetten stärker in das öffentliche Bewusstsein zu rücken. Mit seiner Expertise trägt das UFZ dazu bei, die Folgen und Ursachen des Biodiversitätsverlustes zu erforschen sowie Handlungsoptionen zu entwickeln. Mehr dazu erfahren Sie unter:

http://www.ufz.de/index.php?de=16034 und http://www.ufz.de/data/ufz_spezial_april08_20080325_WEB8411.pdf

Die Biodiversitätsforschung in Deutschland ist auf zahlreiche Institutionen wie Hochschulen, außeruniversitäre Einrichtungen und Ressortforschung bis hin zu Naturschutzverbänden und Firmen verteilt. Das Netzwerk-Forum zur Biodiversitätsforschung, ein Projekt im Rahmen von DIVERSITAS-Deutschland, möchte der Forschungscommunity deshalb eine gemeinsame institutionsunabhängige Kommunikationsstruktur und -kultur anbieten. Mehr dazu erfahren Sie unter:

http://www.biodiversity.de/

Weitere fachliche Informationen:

Helmholtz-Zentrum für Umweltforschung (UFZ)
PD Dr. Martin von Bergen (Department Proteomik)
Tel. 0341-235-1211
http://www.ufz.de/index.php?de=17634
Dr. Hans Hermann Richnow (Department Isotopenbiogeochemie)
Tel. 0341-235-1212
http://www.ufz.de/index.php?de=10650
Prof. Hauke Harms, Dr. Ingo Fetzer (Department Umweltmikrobiologie)
Tel. 0341-235-1260, -1363
http://www.ufz.de/index.php?de=13566
http://www.ufz.de/index.php?de=13572
oder über
Tilo Arnhold (UFZ-Pressestelle)
Telefon: 0341-235-1635
E-mail: presse@ufz.de
Publikationen:
Nico Jehmlich, Ingo Fetzer, Jana Seifert, Jens Mattow, Carsten Vogt, Hauke Harms, Bernd Thiede, Hans Hermann Richnow, Martin von Bergen, and Frank Schmidt (2010): Decimal place slope: a fast and precise method for quantifying 13C incorporation levels for detecting the metabolic activity of microbial species Mol Cell Proteomics.

http://dx.doi.org/10.1074/mcp.M900407-MCP200

Jehmlich N, Schmidt F, Hartwich M, von Bergen M, Richnow HH, Vogt C.

Incorporation of carbon and nitrogen atoms into proteins measured by protein-based stable isotope probing (Protein-SIP). Rapid Commun Mass Spectrom. 2008 Sep;22(18):2889-97.

http://www3.interscience.wiley.com/journal/121387805/abstract

Jehmlich N, Schmidt F, Taubert M, Seifert J, von Bergen M, Richnow HH, Vogt C.

Comparison of methods for simultaneous identification of bacterial species and determination of metabolic activity by protein-based stable isotope probing (Protein-SIP) experiments. Rapid Commun Mass Spectrom. 2009 Jun;23(12):1871-8.

http://www3.interscience.wiley.com/journal/122385820/abstract

Jehmlich, N., Schmidt, F., von Bergen, M., Richnow, H.-H., Vogt, C. (2008): Protein-based stable isotope probing (Protein-SIP) reveals active species within anoxic mixed cultures. The ISME Journal 2, 1122-1133

http://dx.doi.org/10.1038/ismej.2008.64


Weiterführende Links:
Kompetenzzentrum "Isotope in Umwelt- und Biowissenschaften" am Helmholtz-Zentrum für Umweltforschung (UFZ):

http://www.ufz.de/index.php?de=17988

Mikrobiologie – die übersehene Mehrheit.

In: „UFZ-Spezial Biodiversität“, S.22: http://www.ufz.de/data/ufz_spezial_april08_20080325_WEB8411.pdf

Protein-based stable isotope probing (Protein-SIP) for simultaneous identification of bacterial species and determination of metabolic activity:

http://www.ufz.de/data/Protein-SIP12791.pdf

Arbeitsgruppe „Microbial Ecosystem Services“:

http://www.ufz.de/index.php?en=16778


Im Helmholtz-Zentrum für Umweltforschung (UFZ) erforschen Wissenschaftler die Ursachen und Folgen der weit reichenden Veränderungen der Umwelt. Sie befassen sich mit Wasserressourcen, biologischer Vielfalt, den Folgen des Klimawandels und Anpassungsmöglichkeiten, Umwelt- und Biotechnologien, Bioenergie, dem Verhalten von Chemikalien in der Umwelt, ihrer Wirkung auf die Gesundheit, Modellierung und sozialwissenschaftlichen Fragestellungen. Ihr Leitmotiv: Unsere Forschung dient der nachhaltigen Nutzung natürlicher Ressourcen und hilft, diese Lebensgrundlagen unter dem Einfluss des globalen Wandels langfristig zu sichern. Das UFZ beschäftigt an den Standorten Leipzig, Halle und Magdeburg 900 Mitarbeiter. Es wird vom Bund sowie von Sachsen und Sachsen-Anhalt finanziert.

Die Helmholtz-Gemeinschaft leistet Beiträge zur Lösung großer und drängender Fragen von Gesellschaft, Wissenschaft und Wirtschaft durch wissenschaftliche Spitzenleistungen in sechs Forschungsbereichen: Energie, Erde und Umwelt, Gesundheit, Schlüsseltechnologien, Struktur der Materie, Verkehr und Weltraum. Die Helmholtz-Gemeinschaft ist mit fast 28.000 Mitarbeiterinnen und Mitarbeitern in 16 Forschungszentren und einem Jahresbudget von rund 2,8 Milliarden Euro die größte Wissenschaftsorganisation Deutschlands. Ihre Arbeit steht in der Tradition des Naturforschers Hermann von Helmholtz (1821-1894).

Tilo Arnhold | UFZ News
Weitere Informationen:
http://www.ufz.de/
http://www.helmholtz.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Evolution des Immunsystems auf der Spur
08.12.2016 | Charité – Universitätsmedizin Berlin

nachricht Bakterien aus dem Blut «ziehen»
07.12.2016 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Heimcomputer entdecken rekordverdächtiges Pulsar-Neutronenstern-System

08.12.2016 | Physik Astronomie

Siliziumsolarzelle des ISFH erzielt 25% Wirkungsgrad mit passivierenden POLO Kontakten

08.12.2016 | Energie und Elektrotechnik

Oberleitungs-LKW: Option für einen umweltverträglichen Güterverkehr?

08.12.2016 | Verkehr Logistik