Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Störungen im Hirn-Rhythmus

03.11.2011
Netzwerkmodell ermöglicht neue Einblicke in Ursachen und Therapien bei Parkinson

Obwohl Parkinson zu den häufigsten neurologischen Erkrankungen gehört, sind die Ursachen der Krankheit auf der Ebene der Vorgänge im Gehirn weitgehend unverstanden. Elektrische Reizung unterdrückt zwar viele Symptome, doch wie genau dies erreicht wird, ist unbekannt.


Das Modell erklärt, wie die Aktivität von Nervenzellen in zwei Hirnregionen (Impulse in rot und blau) sich im Parkinson-Zustand (grau) aufschaukelt – und wie Tiefe Hirnstimulation (DBS, grün) sie unterdrückt.

Der Freiburger Wissenschaftler Dr. Arvind Kumar und seine Kollegen vom Bernstein Center Freiburg liefern nun ein Erklärungsmodell, wie die Symptome von Parkinson entstehen, wie Tiefe Hirnstimulation (DBS) ihnen entgegenwirkt, und wie sich diese Methode weiter verbessern lässt. Ihre Studie ist in der aktuellen Ausgabe der Fachzeitschrift „Frontiers in Systems Neuroscience“ erschienen.

Als James Parkinson die Krankheit beschrieb, die später seinen Namen tragen sollte, benannte er sie zunächst nach ihrem auffälligsten Symptom: der „Schüttellähmung“. Mehr als hundert Jahre später wurde der Mangel eines bestimmten Botenstoffs im Gehirn als ursächliche Störung erkannt. Damit war aber nicht erklärt, wie die Bewegungsstörungen zustande kommen. Mittlerweile wissen Forscherinnen und Forscher, dass bei Parkinson-Patienten Gruppen von Nervenzellen in einem Gehirnbereich – den Basalganglien – periodische Schwankungen in ihrer Aktivität zeigen.

Die Wissenschaftler um Arvind Kumar liefern nun erstmals eine umfassende Erklärung für die Entstehung dieser Schwingungen – und wie die DBS ihnen entgegenwirkt. Ein im Computer simuliertes Modell der Netzwerke im Gehirn zeigt, dass erhöhte Aktivität in einer anderen Hirnregion, dem Striatum, die Basalganglien in die krankhaften Schwingungen treibt. Beim Gesunden bleibt die Aktivität zweier Regionen innerhalb der Basalganglien im Gleichgewicht: Eine Region regt die andere an, diese wiederum hemmt die erste. Die erhöhte Aktivierung durch das Striatum stört diese Balance, Schwingungen entstehen. Eine geringe Aktivität des Striatums unterdrückt also Schwingungen, eine hohe löst sie aus.

Die Freiburger Forscher erweiterten ihr Modell, um auch den Mechanismus der DBS zu verstehen. So konnten sie erklären, wie DBS die Balance wiederherstellt. Zudem fanden sie ein Reizmuster, das mit etwa halb so vielen Impulsen auskommt als bislang üblich. Die eingesparte Energie könnte die Lebensdauer eines DBS-Implantats verdoppeln – und so die Zahl von medizinischen Eingriffen zum Batterietausch reduzieren.

Kumar A., Cardanobile S., Rotter S. und Aertsen A. (2011) The role of inhibition in generating and controlling Parkinson’s disease oscillations in the basal ganglia. Front. Syst. Neurosci. 5:86. doi: 10.3389/fnsys.2011.00086

Kontakt:
Prof. Dr. Ad Aertsen
Fakultät für Biologie / Bernstein Center Freiburg
Albert-Ludwigs-Universität
Tel.: 0761/203-2718
Fax: 0761/203-2860
E-Mail: ad.aertsen@biologie.uni-freiburg.de

Rudolf-Werner Dreier | idw
Weitere Informationen:
http://www.uni-freiburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mikro-U-Boote für den Magen
24.01.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Echoortung - Lernen, den Raum zu hören
24.01.2017 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Neuer Algorithmus in der Künstlichen Intelligenz

24.01.2017 | Veranstaltungen

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Interview mit Harald Holzer, Geschäftsführer der vitaliberty GmbH

24.01.2017 | Unternehmensmeldung

MAIUS-1 – erste Experimente mit ultrakalten Atomen im All

24.01.2017 | Physik Astronomie

European XFEL: Forscher können erste Vorschläge für Experimente einreichen

24.01.2017 | Physik Astronomie