Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

„Störer vom Dienst“ zeigen einen vielversprechenden Weg in der Krebstherapie auf

20.10.2016

Der Proteinkomplex p97 ist essenziell für das Überleben von Krebszellen. Seine Funktion zu stören, ist erklärtes Ziel einiger Wirkstoffe gegen Krebs – das ist bislang jedoch noch nicht gelungen. Ein Forschungsteam des Max-Delbrück-Centrums für Molekulare Medizin in der Helmholtz-Gemeinschaft (MDC) hat nun einen Weg gefunden, den p97-Komplex aufzubrechen und zu hemmen. Die Ergebnisse sind in Nature Communications erschienen.

Proteine organisieren sich häufig zu sogenannten Proteinkomplexen, um mit vereinten Kräften bestimmte Aufgaben zu erfüllen. Der ringförmige Proteinkomplex p97 ist eine solche molekulare Maschine aus sechs identischen Untereinheiten. Er ist unter anderem an der Verarbeitung zellulären Abfalls beteiligt. Da wuchernde Krebszellen besonders viele Proteine und damit auch besonders viel Ausschuss produzieren, ist p97 für sie überlebensnotwendig.


Strukturmodell des neu entstandenen Proteinkomplexes: ASPL (lila) hat den Verbund der p97-Moleküle (beige und rosa) aufgebrochen und sich mit zwei Untereinheiten zusammengelagert.

Grafik: Anup Arumughan, MDC.


Im Elektronenmikroskop sind die ringförmigen p97-Komplexe erkennbar (links), zusammen mit ASPL organisieren sie sich zu vierzähligen Komplexen um.

Bild: Anup Arumughan, MDC.

Aus diesem Grund eignet p97 sich als Angriffspunkt für Therapien, die Krebszellen auf gezielte Weise abtöten. „Die Idee ist: Wenn wir den p97-Proteinkomplex blockieren, dann erstickt die Krebszelle in ihrem eigenen Abfall und tötet sich selbst“, sagt Dr. Anup Arumughan, der an dem Projekt federführend mitarbeitet. Weltweit versuchen bereits mehrere Forschungsgruppen, p97 mit Hilfe von Wirkstoffen gezielt zu hemmen, waren damit bislang aber nur bedingt erfolgreich.

Nun identifizierte Arumughan aus der MDC-Forschungsgruppe von Prof. Erich Wanker zusammen mit Dr. Yvette Roske und Prof. Udo Heinemann sowie weiteren Arbeitsgruppen am MDC ein Protein, das p97 nicht nur blockiert, sondern sogar in seine Bestandteile zerlegt.

Arumughan nutzte das bewährte „Yeast Two Hybrid“-Verfahren in Hefezellen, um Proteine zu identifizieren, die sich gern mit p97 zusammenlagern. Weil diese Art Hefe-Experiment häufig unzuverlässig ist, wandte er die neu gewonnenen Ergebnisse als Grundlage für eine neue Serie von Experimenten in Zellkulturen an und erstellte ein Verzeichnis von verschiedensten Proteinen, die unterschiedlich stark an p97 binden.

Die höchste Affinität zu p97 besitzt ein Protein namens ASPL, ebenfalls eine Komponente des zellulären Entsorgungsbetriebs. Bei weiteren Untersuchungen stellte sich heraus, dass ASPL den p97-Komplex sogar aufbrach: „Die sechs Untereinheiten von p97 haben eine ungeheure Anziehungskraft zueinander. Diese enge Bindung zu stören, hielt ich zuerst für extrem schwierig, wenn nicht sogar unmöglich“, sagt Arumughan.

Um die Wirkung von ASPL auf p97 besser zu verstehen, bestimmten der Wissenschaftler und seine Kollegen die dreidimensionale Struktur der beiden Bindungspartner und fanden dabei anstatt eines sechszähligen p97-Rings einen vierzähligen Komplex vor, mit je zwei p97- und ASPL-Molekülen.

In weiteren Experimenten identifizierte Arumughan jenen Teil von ASPL, der p97 zerlegen kann. Der Forscher kürzte das ASPL-Protein auf ein Teilstück herunter, das von zahlreichen anderen Proteinen als "UBX"-Modul bekannt ist. In diesen Proteinen dient UBX zum Andocken an den p97-Komplex. ASPL besitzt jedoch ein abgewandeltes UBX-Modul, das nicht nur an den p97-Komplex andocken, sondern ihn sogar aufbricht: „Es scheint, als hätte die Natur ein bekanntes Bindungsmotiv genommen und zwei zusätzliche Arme daran befestigt, um den Job zu erledigen,“ sagt Arumughan über das "eUBX" getaufte Proteinfragment.

ASPL oder sein erweitertes UBX-Modul können jedoch nicht als Krebsmedikament eingesetzt werden. Die Moleküle sind so groß, dass sie von außen nicht in die Zelle eindringen können.

Kleinere Wirkstoff-Moleküle könnten die Funktion des Störers eUBX simulieren. Diese gelte es nun zu finden, erläutert Projektleiter Prof. Erich Wanker: „Unsere Ergebnisse können bei der Suche nach Medikamenten helfen, die die Struktur von p97 aufbrechen, genauso wie ASPL es tut.“ Als nächstes wollen die Forscher herausfinden, welche Aufgabe der neu entdeckte Komplex aus p97 und ASPL in der Zelle erfüllt, denn das ist noch völlig unbekannt.

###

Anup Arumughan et al. (2016): „Quantitative interaction mapping reveals an extended UBX domain in ASPL that disrupts functional p97 hexamers.“ Nature Communications. doi:10.1038/NCOMMS13047

Vera Glaßer | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft
Weitere Informationen:
http://www.mdc-berlin.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Adenoviren binden gezielt an Strukturen auf Tumorzellen
23.04.2018 | Eberhard Karls Universität Tübingen

nachricht Software mit Grips
20.04.2018 | Max-Planck-Institut für Hirnforschung, Frankfurt am Main

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Metalle verbinden ohne Schweißen

Kieler Prototyp für neue Verbindungstechnik wird auf Hannover Messe präsentiert

Schweißen ist noch immer die Standardtechnik, um Metalle miteinander zu verbinden. Doch das aufwändige Verfahren unter hohen Temperaturen ist nicht überall...

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Metalle verbinden ohne Schweißen

23.04.2018 | HANNOVER MESSE

Revolutionär: Ein Algensaft deckt täglichen Vitamin-B12-Bedarf

23.04.2018 | Medizin Gesundheit

Wie zerfallen kleinste Bleiteilchen?

23.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics